optimizer.py 19.7 KB
Newer Older
1
from collections import defaultdict
Q
Qiao Longfei 已提交
2

Q
Qiao Longfei 已提交
3 4 5 6 7 8
import paddle.v2.fluid.framework as framework
from paddle.v2.fluid.framework import unique_name, Program
from paddle.v2.fluid.backward import append_backward_ops
from paddle.v2.fluid.initializer import ConstantInitializer
from paddle.v2.fluid.regularizer import append_regularization_ops
from paddle.v2.fluid.layer_helper import LayerHelper
9

10
__all__ = [
11
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
12
    'AdamaxOptimizer', 'DecayedAdagradOptimizer'
13
]
Q
Qiao Longfei 已提交
14 15 16 17 18 19


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
20 21
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
22 23
    """

24 25
    def __init__(self, global_step=None):
        self._global_step = global_step
26 27 28 29 30
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
31
        self.helper = None
Q
Qiao Longfei 已提交
32 33 34 35 36 37

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
        param_lr_shape = [1]
        param_lr_var = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=param_lr_shape,
            lod_level=1,
            persistable=True)
        param_lr = param_lr * self._learning_rate
        self.helper.set_variable_initializer(
            var=param_lr_var, initializer=ConstantInitializer(param_lr))
        return param_lr_var
53 54 55 56 57 58 59

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
60
        """
61 62
        pass

63 64 65 66 67 68 69 70 71 72 73 74 75
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
76
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
77 78 79 80 81 82 83 84 85 86 87
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
88
            raise Exception("Accumulator {} already exists for parameter {}".
89
                            format(name, param.name))
Q
Qiao Longfei 已提交
90 91 92 93 94 95 96 97 98 99 100

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
            name=unique_name(name),
            persistable=True,
            dtype=dtype or param.data_type,
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
            var, initializer=ConstantInitializer(value=float(fill_value)))
        self._accumulators[name][param.name] = var
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
138 139 140
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
141
                                 startup_program=None):
Q
Qiao Longfei 已提交
142 143 144 145 146 147 148
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
149 150 151 152
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
153
          :param startup_program: 
Q
Qiao Longfei 已提交
154
        """
155 156 157 158 159
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
160
        # for parameters and extend _finish_update method to add custom ops.
161 162

        # Create any accumulators
Q
Qiao Longfei 已提交
163 164
        program = loss.block.program
        self.helper = LayerHelper(
165 166 167
            self.__class__.__name__,
            main_program=program,
            startup_program=startup_program)
168 169 170
        self._create_accumulators(loss.block,
                                  [p[0] for p in parameters_and_grads])

Q
Qiao Longfei 已提交
171 172 173 174 175 176
        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is not None:
                optimize_op = self._append_optimize_op(loss.block,
                                                       param_and_grad)
                optimize_ops.append(optimize_op)
177

178 179 180 181 182 183 184 185 186 187
        # Returned list of ops can include more ops in addition
        # to optimization ops
        return_ops = optimize_ops

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        finish_ops = self._finish_update(loss.block)
        if finish_ops is not None:
            return_ops += finish_ops

188 189
        if self._global_step is not None:
            return_ops.append(self._increment_global_step(loss.block))
190
        return return_ops
Q
Qiao Longfei 已提交
191

Q
Qiao Longfei 已提交
192 193
    def minimize(self,
                 loss,
194
                 startup_program=None,
Q
Qiao Longfei 已提交
195 196
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
197 198
        """Add operations to minimize `loss` by updating `parameter_list`.

199
        This method combines interface `append_backward_ops()` and
Q
Qiao Longfei 已提交
200 201
        `create_optimization_pass()` into one.
        """
202 203
        params_grads = append_backward_ops(loss, parameter_list, no_grad_set or
                                           set())
204 205
        # Add regularization if any 
        params_grads = append_regularization_ops(params_grads)
Q
Qiao Longfei 已提交
206
        optimize_ops = self.create_optimization_pass(params_grads, loss,
207
                                                     startup_program)
Q
Qiao Longfei 已提交
208 209 210 211 212 213 214
        return optimize_ops


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

215
    def __init__(self, learning_rate, global_step=None):
Q
Qiao Longfei 已提交
216
        assert learning_rate is not None
217
        super(SGDOptimizer, self).__init__(global_step)
Q
Qiao Longfei 已提交
218 219 220
        self.type = "sgd"
        self._learning_rate = learning_rate

221 222
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
223

Q
Qiao Longfei 已提交
224 225 226 227 228 229
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
230
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
231
            },
232
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
233 234

        return sgd_op
235 236 237 238 239 240 241


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

242 243 244 245 246
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 global_step=None):
247 248
        assert learning_rate is not None
        assert momentum is not None
249
        super(MomentumOptimizer, self).__init__(global_step)
250 251 252
        self.type = "momentum"
        self._learning_rate = learning_rate
        self._momentum = momentum
253
        self._use_nesterov = bool(use_nesterov)
254 255 256 257 258

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
259
            self._add_accumulator(self._velocity_acc_str, p)
260 261 262 263 264 265 266 267 268 269 270 271 272

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
273
                "LearningRate": self._create_param_lr(param_and_grad)
274 275 276 277 278
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
279
            attrs={"mu": self._momentum,
280
                   "use_nesterov": self._use_nesterov})
281 282

        return momentum_op
283 284 285 286 287 288 289


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

290
    def __init__(self, learning_rate, epsilon=1.0e-6, global_step=None):
291 292
        assert learning_rate is not None
        assert epsilon is not None
293
        super(AdagradOptimizer, self).__init__(global_step)
294 295 296 297 298 299 300 301
        self.type = "adagrad"
        self._learning_rate = learning_rate
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
302
            self._add_accumulator(self._moment_acc_str, p)
303 304 305 306 307 308 309

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

310
        # Create the adagrad optimizer op
311 312 313 314 315 316
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
317
                "LearningRate": self._create_param_lr(param_and_grad)
318 319 320 321 322 323
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
324 325 326 327 328 329 330 331 332 333 334 335


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
336 337
                 epsilon=1e-8,
                 global_step=None):
338 339 340 341
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
342
        super(AdamOptimizer, self).__init__(global_step)
343 344 345 346 347 348 349 350 351
        self.type = "adam"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
352
        main_block = block.program.global_block()
353 354
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
            self._beta1_pow_acc, initializer=ConstantInitializer(self._beta1))

        self._beta2_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta2_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
            self._beta2_pow_acc, initializer=ConstantInitializer(self._beta2))
373 374 375

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
376 377
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
378 379 380 381 382 383 384 385

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
386
        # create the adam optimize op
387 388 389 390 391
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
392
                "LearningRate": self._create_param_lr(param_and_grad),
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
415 416
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
417 418 419 420 421
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
422
        scale_beta2 = main_block.append_op(
423 424 425 426 427 428
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
429 430 431 432 433 434 435 436 437 438 439 440


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
441 442
                 epsilon=1e-8,
                 global_step=None):
443 444 445 446 447 448 449 450 451 452 453 454 455 456
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(AdamaxOptimizer, self).__init__()
        self.type = "adamax"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
457 458 459 460 461 462 463 464
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
            self._beta1_pow_acc, initializer=ConstantInitializer(self._beta1))
465 466 467

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
468 469
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
470 471 472 473 474 475 476 477 478 479 480 481 482

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
483
                "LearningRate": self._create_param_lr(param_and_grad),
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
505 506
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
507 508 509 510 511 512
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 global_step=None):
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

        super(DecayedAdagradOptimizer, self).__init__(global_step)
        self.type = "decayed_adagrad"
        self._learning_rate = learning_rate
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op