test_inference_nlp.cc 5.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17 18 19 20
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
T
tensor-tang 已提交
21
#include <thread>  // NOLINT
T
tensor-tang 已提交
22
#include <vector>
T
tensor-tang 已提交
23 24 25 26 27
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"

DEFINE_string(dirname, "", "Directory of the inference model.");
T
tensor-tang 已提交
28 29 30 31
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
DEFINE_bool(prepare_context, true, "Prepare Context before executor");
T
tensor-tang 已提交
32

T
tensor-tang 已提交
33 34 35 36 37 38
inline double get_current_ms() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
void read_data(
    std::vector<std::vector<int64_t>>* out,
    const std::string& filename = "/home/tangjian/paddle-tj/out.ids.txt") {
  using namespace std;  // NOLINT
  fstream fin(filename);
  string line;
  out->clear();
  while (getline(fin, line)) {
    istringstream iss(line);
    vector<int64_t> ids;
    string field;
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
    out->push_back(ids);
  }
}

T
tensor-tang 已提交
57 58 59 60
TEST(inference, understand_sentiment) {
  if (FLAGS_dirname.empty()) {
    LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
  }
T
tensor-tang 已提交
61 62 63
  std::vector<std::vector<int64_t>> inputdatas;
  read_data(&inputdatas);
  LOG(INFO) << "---------- dataset size: " << inputdatas.size();
T
tensor-tang 已提交
64 65
  LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
  std::string dirname = FLAGS_dirname;
T
tensor-tang 已提交
66

T
tensor-tang 已提交
67
  const bool model_combined = false;
T
tensor-tang 已提交
68 69
  int total_work = 10;
  int num_threads = 2;
T
tensor-tang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  int work_per_thread = total_work / num_threads;
  std::vector<std::unique_ptr<std::thread>> infer_threads;
  for (int i = 0; i < num_threads; ++i) {
    infer_threads.emplace_back(new std::thread([&, i]() {
      for (int j = 0; j < work_per_thread; ++j) {
        // 0. Call `paddle::framework::InitDevices()` initialize all the devices
        // In unittests, this is done in paddle/testing/paddle_gtest_main.cc
        paddle::framework::LoDTensor words;
        /*
          paddle::framework::LoD lod{{0, 83}};
          int64_t word_dict_len = 198392;
          SetupLoDTensor(&words, lod, static_cast<int64_t>(0),
                         static_cast<int64_t>(word_dict_len - 1));
         */
        std::vector<int64_t> srcdata{
            784,   784,    1550,   6463,   56,     75693,  6189,  784,    784,
            1550,  198391, 6463,   42468,  4376,   10251,  10760, 6189,   297,
            396,   6463,   6463,   1550,   198391, 6463,   22564, 1612,   291,
            68,    164,    784,    784,    1550,   198391, 6463,  13659,  3362,
            42468, 6189,   2209,   198391, 6463,   2209,   2209,  198391, 6463,
            2209,  1062,   3029,   1831,   3029,   1065,   2281,  100,    11216,
            1110,  56,     10869,  9811,   100,    198391, 6463,  100,    9280,
            100,   288,    40031,  1680,   1335,   100,    1550,  9280,   7265,
            244,   1550,   198391, 6463,   1550,   198391, 6463,  42468,  4376,
            10251, 10760};
        paddle::framework::LoD lod{{0, srcdata.size()}};
        words.set_lod(lod);
        int64_t* pdata = words.mutable_data<int64_t>(
            {static_cast<int64_t>(srcdata.size()), 1},
            paddle::platform::CPUPlace());
        memcpy(pdata, srcdata.data(), words.numel() * sizeof(int64_t));
T
tensor-tang 已提交
101

T
tensor-tang 已提交
102 103 104
        LOG(INFO) << "number of input size:" << words.numel();
        std::vector<paddle::framework::LoDTensor*> cpu_feeds;
        cpu_feeds.push_back(&words);
T
tensor-tang 已提交
105

T
tensor-tang 已提交
106 107 108
        paddle::framework::LoDTensor output1;
        std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
        cpu_fetchs1.push_back(&output1);
T
tensor-tang 已提交
109

T
tensor-tang 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        // Run inference on CPU
        if (FLAGS_prepare_vars) {
          if (FLAGS_prepare_context) {
            TestInference<paddle::platform::CPUPlace, false, true>(
                dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                FLAGS_use_mkldnn);
          } else {
            TestInference<paddle::platform::CPUPlace, false, false>(
                dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                FLAGS_use_mkldnn);
          }
        } else {
          if (FLAGS_prepare_context) {
            TestInference<paddle::platform::CPUPlace, true, true>(
                dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                FLAGS_use_mkldnn);
          } else {
            TestInference<paddle::platform::CPUPlace, true, false>(
                dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                FLAGS_use_mkldnn);
          }
        }
        LOG(INFO) << output1.lod();
        LOG(INFO) << output1.dims();
      }
    }));
  }
T
tensor-tang 已提交
137 138 139 140 141 142
  auto start_ms = get_current_ms();
  for (int i = 0; i < num_threads; ++i) {
    infer_threads[i]->join();
  }
  auto stop_ms = get_current_ms();
  LOG(INFO) << "total: " << stop_ms - start_ms << " ms";
T
tensor-tang 已提交
143
}