test_inference_nlp.cc 4.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17
#include <thread>  // NOLINT
T
tensor-tang 已提交
18 19 20 21 22
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"

DEFINE_string(dirname, "", "Directory of the inference model.");
T
tensor-tang 已提交
23 24 25 26
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
DEFINE_bool(prepare_context, true, "Prepare Context before executor");
T
tensor-tang 已提交
27

T
tensor-tang 已提交
28 29 30 31 32 33
inline double get_current_ms() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
34 35 36 37 38 39 40
TEST(inference, understand_sentiment) {
  if (FLAGS_dirname.empty()) {
    LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
  }

  LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
  std::string dirname = FLAGS_dirname;
T
tensor-tang 已提交
41
  const bool model_combined = false;
T
tensor-tang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  int total_work = 100;
  int num_threads = 10;
  int work_per_thread = total_work / num_threads;
  std::vector<std::unique_ptr<std::thread>> infer_threads;
  for (int i = 0; i < num_threads; ++i) {
    infer_threads.emplace_back(new std::thread([&, i]() {
      for (int j = 0; j < work_per_thread; ++j) {
        // 0. Call `paddle::framework::InitDevices()` initialize all the devices
        // In unittests, this is done in paddle/testing/paddle_gtest_main.cc
        paddle::framework::LoDTensor words;
        /*
          paddle::framework::LoD lod{{0, 83}};
          int64_t word_dict_len = 198392;
          SetupLoDTensor(&words, lod, static_cast<int64_t>(0),
                         static_cast<int64_t>(word_dict_len - 1));
         */
        std::vector<int64_t> srcdata{
            784,   784,    1550,   6463,   56,     75693,  6189,  784,    784,
            1550,  198391, 6463,   42468,  4376,   10251,  10760, 6189,   297,
            396,   6463,   6463,   1550,   198391, 6463,   22564, 1612,   291,
            68,    164,    784,    784,    1550,   198391, 6463,  13659,  3362,
            42468, 6189,   2209,   198391, 6463,   2209,   2209,  198391, 6463,
            2209,  1062,   3029,   1831,   3029,   1065,   2281,  100,    11216,
            1110,  56,     10869,  9811,   100,    198391, 6463,  100,    9280,
            100,   288,    40031,  1680,   1335,   100,    1550,  9280,   7265,
            244,   1550,   198391, 6463,   1550,   198391, 6463,  42468,  4376,
            10251, 10760};
        paddle::framework::LoD lod{{0, srcdata.size()}};
        words.set_lod(lod);
        int64_t* pdata = words.mutable_data<int64_t>(
            {static_cast<int64_t>(srcdata.size()), 1},
            paddle::platform::CPUPlace());
        memcpy(pdata, srcdata.data(), words.numel() * sizeof(int64_t));
T
tensor-tang 已提交
75

T
tensor-tang 已提交
76 77 78
        LOG(INFO) << "number of input size:" << words.numel();
        std::vector<paddle::framework::LoDTensor*> cpu_feeds;
        cpu_feeds.push_back(&words);
T
tensor-tang 已提交
79

T
tensor-tang 已提交
80 81 82
        paddle::framework::LoDTensor output1;
        std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
        cpu_fetchs1.push_back(&output1);
T
tensor-tang 已提交
83

T
tensor-tang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        // Run inference on CPU
        if (FLAGS_prepare_vars) {
          if (FLAGS_prepare_context) {
            TestInference<paddle::platform::CPUPlace, false, true>(
                dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                FLAGS_use_mkldnn);
          } else {
            TestInference<paddle::platform::CPUPlace, false, false>(
                dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                FLAGS_use_mkldnn);
          }
        } else {
          if (FLAGS_prepare_context) {
            TestInference<paddle::platform::CPUPlace, true, true>(
                dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                FLAGS_use_mkldnn);
          } else {
            TestInference<paddle::platform::CPUPlace, true, false>(
                dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, model_combined,
                FLAGS_use_mkldnn);
          }
        }
        LOG(INFO) << output1.lod();
        LOG(INFO) << output1.dims();
      }
    }));
  }
T
tensor-tang 已提交
111 112 113 114 115 116
  auto start_ms = get_current_ms();
  for (int i = 0; i < num_threads; ++i) {
    infer_threads[i]->join();
  }
  auto stop_ms = get_current_ms();
  LOG(INFO) << "total: " << stop_ms - start_ms << " ms";
T
tensor-tang 已提交
117
}