batch_norm_op.cc 20.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
S
Siddharth Goyal 已提交
16
#include <string>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/data_layout.h"
18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle {
namespace operators {

class BatchNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
    PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
    PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");
    PADDLE_ENFORCE(ctx->HasOutput("MeanOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), "");

    // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
    PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                      "Mean and MeanOut should share the same memory");
    PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0],
                      ctx->Outputs("VarianceOut")[0],
                      "Variance and VarianceOut should share the same memory");

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
49 50
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
51 52 53 54

    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "Input X must have 2 to 5 dimensions.");

Y
Yang Yu 已提交
55
    const int64_t C =
Q
QI JUN 已提交
56 57
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
58 59 60 61 62 63 64 65 66 67 68

    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], C);

    ctx->SetOutputDim("Y", x_dims);
    ctx->SetOutputDim("MeanOut", {C});
    ctx->SetOutputDim("VarianceOut", {C});
    ctx->SetOutputDim("SavedMean", {C});
    ctx->SetOutputDim("SavedVariance", {C});
Y
Yang Yu 已提交
69
    ctx->ShareLoD("X", "Y");
Q
Qiao Longfei 已提交
70
  }
K
Kexin Zhao 已提交
71 72 73

 protected:
  framework::OpKernelType GetExpectedKernelType(
K
update  
Kexin Zhao 已提交
74
      const framework::ExecutionContext &ctx) const override {
K
Kexin Zhao 已提交
75 76
    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("X")->type());
D
dzhwinter 已提交
77 78 79
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
K
Kexin Zhao 已提交
80
    auto bn_param_type = framework::proto::VarType::FP32;
D
dzhwinter 已提交
81 82 83
    if (input_data_type == framework::proto::VarType::FP64) {
      bn_param_type = framework::proto::VarType::FP64;
    }
K
Kexin Zhao 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Scale")->type()),
                      "Scale input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Bias")->type()),
                      "Bias input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Mean")->type()),
                      "Mean input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type, framework::ToDataType(
                                         ctx.Input<Tensor>("Variance")->type()),
                      "Variance input should be of float type");
96

M
mozga-intel 已提交
97
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
98
    framework::LibraryType library = framework::LibraryType::kPlain;
M
mozga-intel 已提交
99
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
100
#ifdef PADDLE_WITH_MKLDNN
101
    if (library == framework::LibraryType::kPlain &&
102
        platform::CanMKLDNNBeUsed(ctx)) {
103
      library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
104
      layout = framework::DataLayout::kMKLDNN;
105 106
    }
#endif
107

108
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
109
                                   library);
K
Kexin Zhao 已提交
110
  }
Q
Qiao Longfei 已提交
111 112 113 114
};

class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
115
  void Make() override {
Q
Qiao Longfei 已提交
116 117
    AddAttr<bool>("is_test", "").SetDefault(false);
    AddAttr<float>("momentum", "").SetDefault(0.9);
C
chengduoZH 已提交
118 119 120 121 122 123
    AddAttr<float>("epsilon", "")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
Q
QI JUN 已提交
124
    AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
Q
Qiao Longfei 已提交
125 126 127
    AddInput("X", "The input tensor");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C "
128
             "that is applied to the output");
Q
Qiao Longfei 已提交
129 130
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
131
             "that is applied to the output");
Q
Qiao Longfei 已提交
132
    AddInput("Mean",
133
             "The global mean (for training) or "
Q
Qiao Longfei 已提交
134 135 136
             "estimated mean (for testing)");
    AddInput("Variance",
             "The global variance (for training) "
137
             "or estimated Variance (for testing)");
138
    AddOutput("Y", "result after normalization").Reuse("X");
Q
Qiao Longfei 已提交
139 140
    AddOutput("MeanOut",
              "Share memory with Mean. "
141 142
              "Store the global mean when training")
        .Reuse("Mean");
Q
Qiao Longfei 已提交
143 144
    AddOutput("VarianceOut",
              "Share memory with Variance. "
145 146
              "Store the global Variance when training")
        .Reuse("Variance");
Q
Qiao Longfei 已提交
147 148
    AddOutput("SavedMean",
              "Mean of the current mini batch, "
Q
Qiao Longfei 已提交
149 150
              "will apply to output when training")
        .AsIntermediate();
Q
Qiao Longfei 已提交
151 152
    AddOutput("SavedVariance",
              "Variance of the current mini batch, "
Q
Qiao Longfei 已提交
153 154
              "will apply to output when training")
        .AsIntermediate();
155 156
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
157 158 159
        .SetDefault(false);
    AddAttr<bool>("fuse_with_relu",
                  "(bool, default false) Only used in mkldnn kernel")
160
        .SetDefault(false);
Q
Qiao Longfei 已提交
161
    AddComment(R"DOC(
162
Batch Normalization.
Q
Qiao Longfei 已提交
163

164 165 166 167 168 169
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
170 171 172 173 174 175

)DOC");
  }
};

template <typename T>
Q
QI JUN 已提交
176 177
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
178 179 180 181 182
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
Q
QI JUN 已提交
183 184 185
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
186 187 188

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
189 190
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
191 192
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
193 194
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

    if (!is_test) {
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

219 220 221 222 223 224 225 226 227 228 229 230
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
        LOG(WARNING) << "Only 1 element in normalization dimension, "
                     << "we skip the batch norm calculation, let y = x.";
        framework::TensorCopySync(*x, ctx.GetPlace(), y);
        return;
      }

Q
QI JUN 已提交
231 232
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
233 234 235 236 237 238 239 240 241 242 243 244
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
245
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
259
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
      }

      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
    if (is_test) {
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
        is_test ? ctx.Input<Tensor>("Mean")->data<T>()
                : ctx.Output<Tensor>("SavedMean")->data<T>(),
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
297 298
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
299 300 301 302 303 304 305 306
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
307
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
308 309 310 311 312 313 314 315 316
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
317
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    }
  }
};

class BatchNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "");
    PADDLE_ENFORCE(ctx->HasInput("SavedMean"), "");
    PADDLE_ENFORCE(ctx->HasInput("SavedVariance"), "");

    // check output
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Scale")), "");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), "");

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
340 341
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
342
    const int C =
Q
QI JUN 已提交
343 344
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
345 346 347 348 349

    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
  }
Q
Qiao Longfei 已提交
350

Y
Yu Yang 已提交
351
 protected:
352
  framework::OpKernelType GetExpectedKernelType(
Q
Qiao Longfei 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
367

M
mozga-intel 已提交
368
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
369 370 371
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

372
#ifdef PADDLE_WITH_MKLDNN
373
    if (library == framework::LibraryType::kPlain &&
374
        platform::CanMKLDNNBeUsed(ctx)) {
375 376
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
377 378
    }
#endif
379

380 381
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
382
        layout, library);
Q
Qiao Longfei 已提交
383
  }
Q
Qiao Longfei 已提交
384 385 386
};

template <typename T>
Q
QI JUN 已提交
387
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
388 389 390 391 392 393 394 395 396
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
397 398 399
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
400 401 402 403

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
404 405
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
406 407
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
408 409
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    const int sample_size = x->numel() / N / C;

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(saved_mean->data<T>(), C);
    ConstEigenVectorArrayMap<T> inv_var_arr(saved_inv_variance->data<T>(), C);

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    d_scale->mutable_data<T>(ctx.GetPlace());
    d_bias->mutable_data<T>(ctx.GetPlace());

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))

    EigenVectorArrayMap<T> d_bias_arr(d_bias->mutable_data<T>(ctx.GetPlace()),
                                      C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale->mutable_data<T>(ctx.GetPlace()),
                                       C);

    d_bias_arr.setZero();
    d_scale_arr.setZero();

438 439 440 441 442
    if ((N * sample_size) == 1) {
      framework::TensorCopySync(*d_y, ctx.GetPlace(), d_x);
      return;
    }

Q
Qiao Longfei 已提交
443 444
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size);

Q
QI JUN 已提交
445 446
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          d_bias_arr(c) += d_y_arr.col(nc).sum();
          d_scale_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          d_x_arr.col(nc) +=
              scale_inv_var_nhw(c) *
              (d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) -
               (x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) * inv_var_arr(c));
        }
        break;
      }
Q
QI JUN 已提交
469
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

        const auto d_y_row_sum = d_y_arr.rowwise().sum();
        const auto x_minus_mean = x_arr.colwise() - mean_arr;
        const auto d_y_mul_x_minus_mean_row_sum =
            (d_y_arr * x_minus_mean).rowwise().sum();
        const auto inv_var_sqr = inv_var_arr * inv_var_arr;
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          d_bias_arr += d_y_arr.col(nhw);
          d_scale_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
          d_x_arr.col(nhw) +=
              scale_inv_var_nhw *
              (d_y_arr.col(nhw) * N * sample_size - d_y_row_sum -
               x_minus_mean.col(nhw) * inv_var_sqr *
                   d_y_mul_x_minus_mean_row_sum);
        }
        break;
      }
      default:
Q
QI JUN 已提交
494
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
495 496 497 498
    }
  }
};

Y
Yu Yang 已提交
499 500 501 502 503 504 505 506 507 508 509 510
class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
    op->SetType("batch_norm_grad");
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));

    op->SetInput("Scale", Input("Scale"));
511
    op->SetInput("Bias", Input("Bias"));
Y
Yu Yang 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524
    op->SetInput("SavedMean", Output("SavedMean"));
    op->SetInput("SavedVariance", Output("SavedVariance"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Q
Qiao Longfei 已提交
525 526 527 528
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
529 530 531 532
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
                  ops::BatchNormGradMaker);
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);

Q
QI JUN 已提交
533
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
534 535
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
536 537
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
538 539
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);