optimizer.py 59.7 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import six
import logging
from collections import defaultdict

22
import paddle
M
MRXLT 已提交
23
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
24 25 26 27 28 29 30 31
from paddle.fluid.framework import (
    Program,
    Variable,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
M
MRXLT 已提交
32 33 34 35

from ..fluid import framework
from ..fluid import layers
from ..fluid import unique_name
36 37 38 39 40 41 42 43 44 45 46 47
from ..fluid.backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
from ..fluid.clip import (
    GradientClipBase,
    GradientClipByNorm,
    error_clip_callback,
    append_gradient_clip_ops,
)
48
from ..fluid.framework import program_guard, Parameter
M
MRXLT 已提交
49 50 51 52 53 54 55 56 57 58
from ..fluid.initializer import Constant
from ..fluid.layer_helper import LayerHelper
from ..fluid.layers import ops
from ..fluid.dygraph import base as imperative_base
from ..fluid.dygraph import no_grad
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
from ..fluid.wrapped_decorator import signature_safe_contextmanager
from .. import compat as cpt
59
from .lr import LRScheduler
60
import copy
61
from paddle import _C_ops, _legacy_C_ops
62 63 64 65 66 67
from paddle.fluid.framework import (
    _in_legacy_dygraph,
    _in_eager_without_dygraph_check,
    _current_expected_place,
    in_dygraph_mode,
)
M
MRXLT 已提交
68

69 70
__all__ = []

M
MRXLT 已提交
71

72
@framework.static_only
73 74 75 76 77 78 79 80
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
81
    from paddle.incubate.autograd.primx import orig2prim, Transform
82

83
    program = default_main_program()
84 85 86
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
87
    block = program.current_block()
88
    for el in loss_list:
89 90 91
        assert (
            el.block == block
        ), f'variable in loss_list should be in current block of main program'
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


M
MRXLT 已提交
120
class Optimizer(object):
121
    r"""Optimizer Base class.
M
MRXLT 已提交
122 123 124 125 126 127

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
128 129
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
130
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
131 132 133 134
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
M
MRXLT 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
       Base class for optimizer. 
    
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
160
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
161 162 163 164
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
165
            loss.backward()
M
MRXLT 已提交
166 167 168
            adam.step()
            adam.clear_grad()

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            #Take the subclass sgd as an example
            #optimize parameters in linear_1 and linear2 in different options. 
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
                weight_decay=0.01)                   
R
Roc 已提交
188
            loss.backward()
189 190 191
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
192 193
    """

194
    @imperative_base.no_grad
195 196 197 198 199 200 201 202
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
203

204 205 206 207
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
208
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
209 210
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
211 212 213 214
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
215 216 217 218
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
219 220
                    " as list of dict"
                )
221 222 223 224
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
225
        self._name = name
J
Jiabin Yang 已提交
226
        if framework._non_static_mode():
M
MRXLT 已提交
227 228 229 230 231
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
232 233
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
234 235 236 237
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
238 239 240
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
241 242
                                % weight_decay.__str__()
                            )
243 244
                            break

245
        if not isinstance(learning_rate, (float, LRScheduler)):
246
            raise TypeError(
247 248 249
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
250 251 252 253 254 255 256
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            from ..fluid.regularizer import L2Decay
257

M
MRXLT 已提交
258 259 260 261 262
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
263

M
MRXLT 已提交
264
        self._dtype = None
L
Leo Chen 已提交
265 266
        # Infer the dtype form parameter
        if self._parameter_list:
267 268
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
269 270 271
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
272 273 274
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
275

M
MRXLT 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad
289 290
        self._default_dict = {
            'weight_decay': self.regularization,
291
            'grad_clip': self._grad_clip,
292 293 294 295 296 297 298 299
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
300

301
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
302
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
303 304
        self._use_multi_tensor = None

305
        self._param_dict = self._create_multi_tensor_dict()
306 307 308 309 310
        self._auxiliary_vars = {}

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

311 312 313 314 315 316 317
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

318 319 320
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
321 322 323
    @framework.dygraph_only
    def state_dict(self):
        '''
324
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
325 326
        If the optimizer never be called(minimize function), the state_dict is empty.

327
        Args:
M
MRXLT 已提交
328 329 330 331
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
332

M
MRXLT 已提交
333 334 335 336
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
337
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
338 339 340 341 342 343 344 345 346

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
347 348 349 350
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
351
        # global step if use lr decay
352
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
353 354 355 356 357 358
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
359
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
360

361
        Args:
M
MRXLT 已提交
362 363 364
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
365

M
MRXLT 已提交
366 367 368 369 370
        Examples:
            .. code-block:: python

                import paddle

371
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
372

373 374
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
375

376
                scheduler = paddle.optimizer.lr.NoamDecay(
377 378 379 380 381 382
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
383

384
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
385 386 387
                adam.set_state_dict(opti_state_dict)

        '''
388
        if isinstance(self._learning_rate, LRScheduler):
389
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
390

391
        # NOTE: exclude learning rate scheduler's state from
392 393 394 395
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
396 397 398 399
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
400 401 402
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
403 404 405
                assert (
                    var_tmp.name in state_dict
                ), "optimizer Tensor {} not found".format(var_tmp.name)
M
MRXLT 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
419 420 421 422 423 424 425 426 427 428 429
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
430

431 432 433 434 435
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
436 437 438 439 440 441 442

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
443
        # lr var can't be float16, for pure fp16 training, should extra handle the dtype for lr
444 445 446 447 448 449 450 451 452 453 454
        _lr_dtype = (
            paddle.get_default_dtype() if self._dtype is None else self._dtype
        )
        _lr_dtype = (
            paddle.float32
            if (
                paddle.get_default_dtype() != "float16"
                and _lr_dtype == paddle.float16
            )
            else _lr_dtype
        )
455
        if isinstance(self._learning_rate, LRScheduler):
456 457 458 459 460
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
461 462 463 464 465 466 467
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype=_lr_dtype,
                )
468 469 470
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
M
MRXLT 已提交
471

472
                self._learning_rate_map[
473 474
                    framework.default_main_program()
                ] = lr_var
M
MRXLT 已提交
475

476 477
            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
478 479
                lr_var, initializer=Constant(value=lr_value)
            )
480 481 482
        elif isinstance(self._learning_rate, float):
            # only create global lr_var once
            lr = self._global_learning_rate()
M
MRXLT 已提交
483 484 485
            if isinstance(lr, framework.Variable):
                return
            else:
486 487 488
                self._learning_rate_map[
                    framework.default_main_program()
                ] = layers.create_global_var(
489 490 491
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
492
                    dtype=_lr_dtype,
493 494
                    persistable=True,
                )
M
MRXLT 已提交
495 496 497 498 499

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
500

501
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
502 503 504
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
505
            value (float): the value of learning rate
M
MRXLT 已提交
506 507 508

        Returns:
            None
509

M
MRXLT 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
532
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
533
            raise TypeError(
534
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
535 536
                % (type(value))
            )
537
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
538
            raise RuntimeError(
539
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
540
            )
541 542 543
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
544 545
            if in_dygraph_mode():
                place = _current_expected_place()
546 547 548 549 550 551 552
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
553 554

            elif _in_legacy_dygraph():
555 556 557 558 559 560 561 562 563
                _legacy_C_ops.fill_constant(
                    current_lr,
                    'value',
                    float(value),
                    'dtype',
                    current_lr.dtype,
                    'shape',
                    list(current_lr.shape),
                )
564 565
            else:
                global_block = framework.default_main_program().global_block()
566 567 568 569 570 571 572 573 574 575
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
576 577 578

    def get_lr(self):
        """
579
        Get current learning rate of optimizer.
580 581
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
582

M
MRXLT 已提交
583
        Returns:
584
            float: The current learning rate of optimizer.
M
MRXLT 已提交
585 586 587 588

        Examples:
            .. code-block:: python

589
                # train on default dynamic graph mode
M
MRXLT 已提交
590
                import paddle
591 592 593 594 595 596 597 598 599 600 601
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
602

603 604 605 606 607 608 609 610
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
611
                    adam.step()
612
                    scheduler.step()
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
632 633 634 635 636

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
637
            return self._learning_rate()
M
MRXLT 已提交
638 639 640 641 642 643 644 645 646 647 648

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
649
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
650 651 652 653 654 655 656
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
657 658 659 660
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
661
            else:
662 663 664 665
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
666 667
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
668 669 670
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

694 695 696 697 698 699 700 701 702 703
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
704 705 706 707 708 709 710 711 712 713 714
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
715 716 717 718
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
719
            if framework._non_static_mode():
M
MRXLT 已提交
720
                return self._accumulators[name][param.name]
721 722
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
723 724 725
                    name, param.name
                )
            )
M
MRXLT 已提交
726 727 728 729 730 731 732 733 734 735 736 737
        if shape == None:
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
738
            type=core.VarDesc.VarType.LOD_TENSOR
739 740
            if framework._in_eager_without_dygraph_check()
            else (param.type if type is None else type),
M
MRXLT 已提交
741
            shape=shape,
742 743
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
744 745 746 747
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
748 749
                var, initializer=Constant(value=float(fill_value))
            )
M
MRXLT 已提交
750

J
Jiabin Yang 已提交
751
        if framework._non_static_mode():
M
MRXLT 已提交
752
            if len(self._accumulators_holder) > 0:
753 754 755 756 757
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
M
MRXLT 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
                var.set_value(self._accumulators_holder[var_name])

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
775 776 777 778
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
779 780
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
781 782 783
                    name, param.name
                )
            )
M
MRXLT 已提交
784 785 786 787
        return self._accumulators[name][param.name]

    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
788
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
789 790
                param_name = param_and_grad[0].name
                ops = target_block.ops
791 792
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
793 794 795 796 797
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
798 799
                            device_attr_name
                        )
M
MRXLT 已提交
800 801 802 803 804 805 806 807
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

808 809 810
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
838 839 840
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
841
            target_block = framework.default_main_program().blocks[
842 843
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
844 845 846

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
847

M
MRXLT 已提交
848 849
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
850 851
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
852 853
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
854
        ]:
855 856 857 858 859
            if (
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
            ):
860
                if isinstance(parameters_and_grads, list):
861 862 863 864 865 866 867 868 869 870
                    assert param_group_idx == 0
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
                        param_group_idx,
                    )
871 872
                else:
                    self._update_param_group(parameters_and_grads)
873 874 875 876 877 878 879 880 881
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
                        param_group_idx,
                    )
J
Jiabin Yang 已提交
882
            if framework._non_static_mode():
883 884 885 886 887
                self._append_optimize_multi_tensor_op(
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
                )
888
            else:
889 890 891
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
892 893 894
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
895
                for param_and_grad in parameters_and_grads:
896 897 898 899
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
900 901 902
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
903 904
                    param_grad_list
                ), name_scope("optimizer"):
905 906 907
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
908 909 910 911
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
                        )
912
        else:
J
Jiabin Yang 已提交
913
            if not framework._non_static_mode():
914 915 916 917 918 919 920 921
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
922

923
            if isinstance(parameters_and_grads, list):
924 925 926 927 928 929 930 931
                self._create_accumulators(
                    target_block,
                    [
                        p[0]
                        for p in parameters_and_grads
                        if not p[0].stop_gradient
                    ],
                )
932
            else:
933 934
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
935 936
                    p[0]
                    for p in params_acc_dict['params']
937 938 939 940
                    if not p[0].stop_gradient
                ]
                self._create_accumulators(target_block, params_acc_dict)

J
Jiabin Yang 已提交
941
            if framework._non_static_mode():
942 943 944 945 946
                if isinstance(parameters_and_grads, list):
                    for param_and_grad in parameters_and_grads:
                        if param_and_grad[1] is None:
                            continue
                        if param_and_grad[0].stop_gradient is False:
947 948 949
                            self._append_optimize_op(
                                target_block, param_and_grad
                            )
950 951 952 953 954 955 956
                else:
                    for param_and_grad in parameters_and_grads['params']:
                        if param_and_grad[1] is None:
                            continue
                        if param_and_grad[0].stop_gradient is False:
                            param_grad_dict = dict()
                            param_grad_dict['params'] = param_and_grad
957 958 959 960 961 962 963 964 965 966
                            param_grad_dict.update(
                                {
                                    k: v
                                    for k, v in parameters_and_grads.items()
                                    if k != 'params'
                                }
                            )
                            self._append_optimize_op(
                                target_block, param_grad_dict
                            )
967 968
            else:
                for param_and_grad in parameters_and_grads:
969 970
                    if param_and_grad[1] is None:
                        continue
971
                    with param_and_grad[0].block.program._optimized_guard(
972 973
                        param_and_grad
                    ), name_scope("optimizer"):
974
                        if param_and_grad[0].stop_gradient is False:
975
                            device = self._get_device_for_param(
976 977
                                param_and_grad[0].name
                            )
978 979
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
980 981
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
982 983 984 985 986 987 988 989 990 991 992

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

993 994 995 996 997 998 999 1000
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
1029
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1030
                # This can be any optimizer supported by dygraph.
1031
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1032 1033 1034 1035 1036 1037 1038
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
1039
        if framework._non_static_mode():
M
MRXLT 已提交
1040 1041 1042 1043
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1044 1045 1046 1047
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
1048
        if framework._non_static_mode():
1049
            parameter_list = parameters if parameters else self._parameter_list
1050

M
MRXLT 已提交
1051
            params_grads = []
1052
            for param in parameter_list:
1053
                if param.stop_gradient:
M
MRXLT 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062
                    continue
                if param._grad_ivar() is not None:
                    # create gradient tensor
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))
        else:
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
1063
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1064
            program = loss.block.program
1065 1066
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
M
MRXLT 已提交
1067
                "Maybe that you should call paddle.mean to process the current loss.".format(
1068 1069 1070 1071
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1072
            with program_guard(program, startup_program):
1073
                from paddle.incubate.autograd.utils import prim_enabled
1074

1075
                if prim_enabled():
1076 1077 1078
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1079
                else:
1080 1081 1082
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np

                inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                linear = paddle.nn.Linear(10, 10)
                inp = paddle.to_tensor(inp)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

            params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
1127 1128 1129
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1130 1131 1132 1133

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1134 1135 1136
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1148
        if framework._non_static_mode():
1149 1150 1151 1152
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1153 1154 1155
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1156
                    params_grads = self.append_regularization_ops(
1157 1158
                        params_grads, self.regularization
                    )
1159 1160 1161
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1162
                        params_grads['params'] = grad_clip(
1163 1164
                            params_grads['params']
                        )
1165

1166
                    params_grads['params'] = self.append_regularization_ops(
1167 1168 1169 1170 1171
                        params_grads['params'], self.regularization
                    )
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1172
        else:
1173
            assert param_group_idx == 0
M
MRXLT 已提交
1174 1175 1176 1177 1178
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1179
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1180 1181
        """Create and add backward regularization Operators

1182 1183 1184
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1185
        if grad is None or (
1186 1187 1188 1189 1190 1191
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1202
        if framework.in_dygraph_mode():
1203
            if grad.is_dense() and regularization_term.is_dense():
1204 1205
                return _C_ops.add_n([grad, regularization_term])
            return _legacy_C_ops.sum([grad, regularization_term])
1206
        elif framework._in_legacy_dygraph():
1207
            return _legacy_C_ops.sum([grad, regularization_term])
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1220 1221
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1222 1223 1224

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1225
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1226 1227 1228

        return new_grad

1229 1230 1231
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
        r"""Create and add backward regularization Operators
    
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
    
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
    
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
    
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1253
        if framework._non_static_mode():
1254
            for param, grad in parameters_and_grads:
1255
                new_grad = self._create_regularization_of_grad(
1256 1257
                    param, grad, regularization
                )
1258 1259 1260 1261 1262
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1263 1264 1265 1266 1267
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1268 1269 1270 1271
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1272 1273
                            % regularization.__str__()
                        )
1274 1275
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1276 1277
                            param, grad, regularization
                        )
1278 1279 1280
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1281 1282 1283
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1284
        param_no_trainable = set(
1285 1286
            [param.name for param in parameters if param.stop_gradient is True]
        )
M
MRXLT 已提交
1287 1288 1289 1290 1291 1292
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

    @framework.dygraph_only
1293
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1294 1295
        """
        Clear the gradients of all optimized parameters for model.
1296 1297

        If not, new gradient will accumulat on previous gradient.
1298 1299

        There are two method to clear grad: set_to_zero or delete grad.
1300

1301 1302
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1303

M
MRXLT 已提交
1304 1305
        Returns:
            None
1306

M
MRXLT 已提交
1307 1308 1309 1310 1311
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
1312

M
MRXLT 已提交
1313 1314
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
1315
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1316
                # This can be any optimizer supported by dygraph.
1317
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1318 1319 1320 1321 1322 1323 1324
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1325
        param_list = []
1326
        if self._parameter_list is None or not isinstance(
1327 1328
            self._parameter_list[0], dict
        ):
1329 1330
            for p in self._parameter_list:
                if not p.stop_gradient:
1331
                    param_list.append(p)
1332 1333 1334 1335
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1336
                        param_list.append(p)
1337

J
Jiabin Yang 已提交
1338
        if _in_eager_without_dygraph_check():
1339
            for p in param_list:
1340
                p.clear_gradient(set_to_zero)
1341 1342
        else:
            core.clear_gradients(param_list, set_to_zero)
M
MRXLT 已提交
1343

1344
    @imperative_base.no_grad
1345 1346 1347
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1366 1367
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1368 1369 1370 1371
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1372

M
MRXLT 已提交
1373
                import paddle
M
MRXLT 已提交
1374
                linear = paddle.nn.Linear(10, 10)
1375 1376
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1377 1378 1379 1380 1381 1382 1383 1384
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1385
                loss.backward()
M
MRXLT 已提交
1386 1387 1388
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1389 1390 1391
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1392
        parameter_list = parameters if parameters else self._parameter_list
1393

1394 1395 1396 1397 1398 1399
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1400

1401 1402 1403
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1404 1405 1406

        return optimize_ops, params_grads

L
Leo Chen 已提交
1407
    @imperative_base.no_grad
M
MRXLT 已提交
1408 1409 1410
    @framework.dygraph_only
    def step(self):
        """
M
MRXLT 已提交
1411
        Execute the optimizer and update parameters once.
1412

M
MRXLT 已提交
1413 1414 1415 1416 1417 1418 1419 1420
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
1421

M
MRXLT 已提交
1422 1423
                value = np.arange(26).reshape(2, 13).astype("float32")
                a = paddle.to_tensor(value)
M
MRXLT 已提交
1424
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1425
                # This can be any optimizer supported by dygraph.
1426
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1427 1428 1429 1430 1431 1432
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1443 1444 1445 1446 1447 1448
            self._apply_optimize(
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
            )
1449 1450 1451

        else:
            # optimize parameters in groups
1452
            for idx, param_group in enumerate(self._param_groups):
1453 1454 1455 1456 1457 1458 1459 1460
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1461 1462 1463 1464 1465 1466 1467 1468
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
                )
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1484 1485
                "but received set, please use list instead."
            )
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1499 1500
                "some parameters appear in more than one parameter group"
            )
1501 1502 1503 1504 1505

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                from ..fluid.regularizer import L2Decay
1506

1507 1508 1509 1510
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1511
            param.optimize_attr['learning_rate'] = param_group.get(
1512 1513
                'learning_rate', 1.0
            )
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1525 1526

    @framework.dygraph_only
1527
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1539 1540 1541 1542
    def _append_optimize_multi_tensor_op(
        self, target_block, parameters_and_grads, param_group_idx
    ):
        """
1543 1544 1545
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass