pybind.cc 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Y
Yu Yang 已提交
19 20 21 22 23 24 25 26 27
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/pybind/tensor_bind.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

28 29 30
namespace py = pybind11;
namespace pd = paddle::framework;

Y
Yu Yang 已提交
31
USE_OP(add_two);
Q
Qiao Longfei 已提交
32
USE_OP(onehot_cross_entropy);
Y
Yu Yang 已提交
33
USE_OP_WITHOUT_KERNEL(fc);
Q
Qiao Longfei 已提交
34
USE_OP(sgd);
Q
qijun 已提交
35 36 37 38
USE_OP(mul);
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
Y
Yu Yang 已提交
39

Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48 49
template <typename ClassType>
void ExposeOperator(ClassType& m) {
  m.def("infer_shape", &ClassType::type::InferShape)
      .def("run", &ClassType::type::Run)
      .def("outputs",
           [](const typename ClassType::type& op) -> std::vector<std::string> {
             return op.outputs_;
           })
      .def("__str__", &ClassType::type::DebugString);
}
Y
Yu Yang 已提交
50

51 52 53 54 55
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

56
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
57
  py::module m("core", "C++ core of PaddlePaddle");
58

Y
Yu Yang 已提交
59 60
  py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer([](pd::Tensor& self) -> py::buffer_info {
61
        return paddle::pybind::CastToPyBuffer(self);
Y
Yu Yang 已提交
62 63 64 65 66
      })
      .def("get_dims",
           [](const pd::Tensor& self) { return pd::vectorize(self.dims()); })
      .def("set_dims",
           [](pd::Tensor& self, const std::vector<int>& dim) {
F
fengjiayi 已提交
67
             self.Resize(pd::make_ddim(dim));
Y
Yu Yang 已提交
68 69 70 71 72 73 74 75 76
           })
      .def("alloc_float",
           [](pd::Tensor& self) {
             self.mutable_data<float>(paddle::platform::CPUPlace());
           })
      .def("alloc_int",
           [](pd::Tensor& self) {
             self.mutable_data<int>(paddle::platform::CPUPlace());
           })
77
      .def("set", paddle::pybind::PyTensorSetFromArray<float>)
Y
Yu Yang 已提交
78 79 80
      .def("set", paddle::pybind::PyTensorSetFromArray<int>)
      .def("shape",
           [](pd::Tensor& self) { return pd::vectorize(self.dims()); });
Y
Yu Yang 已提交
81

82 83 84 85 86 87 88 89 90 91
  py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.

All parameter, weight, gradient are variables in Paddle.
)DOC")
      .def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); })
      .def("set_int",
           [](pd::Variable& var, int val) -> void {
             *var.GetMutable<int>() = val;
           })
      .def("get_int",
Y
Yu Yang 已提交
92 93 94 95 96 97
           [](const pd::Variable& var) -> int { return var.Get<int>(); })
      .def("get_tensor",
           [](pd::Variable& self) -> pd::Tensor* {
             return self.GetMutable<pd::Tensor>();
           },
           py::return_value_policy::reference);
98 99 100 101 102 103 104 105

  py::class_<pd::Scope, std::shared_ptr<pd::Scope>>(m, "Scope")
      .def(py::init<const std::shared_ptr<pd::Scope>&>())
      .def("get_var",
           &pd::Scope::GetVariable,
           py::return_value_policy::reference)
      .def("create_var",
           &pd::Scope::CreateVariable,
106 107
           py::return_value_policy::reference)
      .def("get_var_name", &pd::Scope::GetVariableName);
108

Y
Yu Yang 已提交
109 110
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
111
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
Y
Yu Yang 已提交
112
    auto& protos = pd::OpRegistry::protos();
Y
Yu Yang 已提交
113
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
114
    for (auto it = protos.begin(); it != protos.end(); ++it) {
Y
Yu Yang 已提交
115 116
      PADDLE_ENFORCE(it->second.IsInitialized(),
                     "OpProto must all be initialized");
Y
Yu Yang 已提交
117 118
      std::string str;
      PADDLE_ENFORCE(it->second.SerializeToString(&str),
Y
Yu Yang 已提交
119
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
120
      ret_values.push_back(py::bytes(str));
Y
Yu Yang 已提交
121 122 123
    }
    return ret_values;
  });
124 125 126 127 128 129
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
      .def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
      .def("temp", pd::OperatorBase::TMP_VAR_NAME);

Y
Yu Yang 已提交
130 131 132 133 134
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
      .def_static("cpu_context", []() -> paddle::platform::DeviceContext* {
        return new paddle::platform::CPUDeviceContext();
      });

Y
Yu Yang 已提交
135 136
  py::class_<pd::OperatorBase, std::shared_ptr<pd::OperatorBase>> operator_base(
      m, "Operator");
Y
Yu Yang 已提交
137

Y
Yu Yang 已提交
138
  operator_base.def_static("create", [](py::bytes protobin) {
Y
Yu Yang 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    pd::OpDesc desc;
    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                   "Cannot parse user input to OpDesc");
    PADDLE_ENFORCE(desc.IsInitialized(),
                   "User OpDesc is not initialized, reason %s",
                   desc.InitializationErrorString());
    return pd::OpRegistry::CreateOp(desc);
  });
  ExposeOperator(operator_base);

  using PlainNetPtr = std::shared_ptr<pd::PlainNet>;
  py::class_<pd::PlainNet, PlainNetPtr> net(m, "Net");

  net.def_static("create",
                 []() -> std::shared_ptr<pd::PlainNet> {
                   auto retv = std::make_shared<pd::PlainNet>();
Y
Yu Yang 已提交
155
                   retv->type_ = "plain_net";
Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164 165
                   return retv;
                 })
      .def("add_op", &pd::PlainNet::AddOp)
      .def("add_op",
           [](PlainNetPtr& self, const PlainNetPtr& net) -> void {
             self->AddOp(std::static_pointer_cast<pd::OperatorBase>(net));
           })
      .def("complete_add_op", &pd::PlainNet::CompleteAddOp)
      .def("complete_add_op", [](PlainNetPtr& self) { self->CompleteAddOp(); });
  ExposeOperator(net);
Y
Yu Yang 已提交
166

167 168
  m.def("unique_integer", UniqueIntegerGenerator);

169
  return m.ptr();
L
Luo Tao 已提交
170
}