test_tile_op_xpu.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
R
RedContritio 已提交
18
from get_test_cover_info import (
19
    XPUOpTestWrapper,
20 21 22
    create_test_class,
    get_xpu_op_support_types,
)
R
RedContritio 已提交
23
from op_test_xpu import XPUOpTest
24

25
import paddle
26
from paddle import fluid
27

28 29 30 31
paddle.enable_static()
np.random.seed(10)


32
# Situation 1: repeat_times is a list (without tensor)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
class XPUTestTileOpRank1(XPUOpTestWrapper):
    def __init__(self):
        self.op_name = 'tile'
        self.use_dynamic_create_class = False

    class TestTileOpRank1(XPUOpTest):
        def setUp(self):
            self.dtype = self.in_type
            self.__class__.no_need_check_grad = True
            self.place = paddle.XPUPlace(0)
            self.op_type = "tile"
            self.init_data()
            self.inputs = {
                'X': np.random.random(self.ori_shape).astype(self.dtype)
            }
            self.attrs = {'repeat_times': self.repeat_times}
            output = np.tile(self.inputs['X'], self.repeat_times)
            self.outputs = {'Out': output}

        def init_data(self):
            self.ori_shape = [100]
            self.repeat_times = [2]

        def test_check_output(self):
            self.check_output_with_place(self.place)

H
houj04 已提交
59 60 61
        def test_check_grad(self):
            self.check_grad_with_place(self.place, ['X'], 'Out')

62
    # with dimension expanding
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    class TestTileOpRank2Expanding(TestTileOpRank1):
        def init_data(self):
            self.ori_shape = [120]
            self.repeat_times = [2, 2]

    class TestTileOpRank2(TestTileOpRank1):
        def init_data(self):
            self.ori_shape = [12, 14]
            self.repeat_times = [2, 3]

    class TestTileOpRank3_Corner(TestTileOpRank1):
        def init_data(self):
            self.ori_shape = (2, 10, 5)
            self.repeat_times = (1, 1, 1)

    class TestTileOpRank3_Corner2(TestTileOpRank1):
        def init_data(self):
            self.ori_shape = (2, 10, 5)
            self.repeat_times = (2, 2)

    class TestTileOpRank3(TestTileOpRank1):
        def init_data(self):
            self.ori_shape = (2, 4, 15)
            self.repeat_times = (2, 1, 4)

    class TestTileOpRank4(TestTileOpRank1):
        def init_data(self):
            self.ori_shape = (2, 4, 5, 7)
            self.repeat_times = (3, 2, 1, 2)
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    class TestTileOpRank_ZeroDim1(TestTileOpRank1):
        def init_data(self):
            self.ori_shape = []
            self.repeat_times = []

    class TestTileOpRank_ZeroDim2(TestTileOpRank1):
        def init_data(self):
            self.ori_shape = []
            self.repeat_times = [2]

    class TestTileOpRank_ZeroDim3(TestTileOpRank1):
        def init_data(self):
            self.ori_shape = []
            self.repeat_times = [2, 3]

108 109

# Situation 2: repeat_times is a list (with tensor)
110 111 112 113 114 115 116 117 118 119 120 121 122 123
class XPUTestTileOpRank1_tensor_attr(XPUOpTestWrapper):
    def __init__(self):
        self.op_name = 'tile'
        self.use_dynamic_create_class = False

    class TestTileOpRank1_tensor_attr(XPUOpTest):
        def setUp(self):
            self.dtype = self.in_type
            self.__class__.no_need_check_grad = True
            self.place = paddle.XPUPlace(0)
            self.op_type = "tile"
            self.init_data()
            repeat_times_tensor = []
            for index, ele in enumerate(self.repeat_times):
124
                repeat_times_tensor.append(
125
                    ("x" + str(index), np.ones(1).astype('int32') * ele)
126
                )
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

            self.inputs = {
                'X': np.random.random(self.ori_shape).astype(self.dtype),
                'repeat_times_tensor': repeat_times_tensor,
            }
            self.attrs = {"repeat_times": self.infer_repeat_times}
            output = np.tile(self.inputs['X'], self.repeat_times)
            self.outputs = {'Out': output}

        def init_data(self):
            self.ori_shape = [100]
            self.repeat_times = [2]
            self.infer_repeat_times = [-1]

        def test_check_output(self):
            self.check_output_with_place(self.place)

H
houj04 已提交
144 145 146
        def test_check_grad(self):
            self.check_grad_with_place(self.place, ['X'], 'Out')

147 148 149 150 151 152 153 154 155 156 157
    class TestTileOpRank2_Corner_tensor_attr(TestTileOpRank1_tensor_attr):
        def init_data(self):
            self.ori_shape = [12, 14]
            self.repeat_times = [1, 1]
            self.infer_repeat_times = [1, -1]

    class TestTileOpRank2_attr_tensor(TestTileOpRank1_tensor_attr):
        def init_data(self):
            self.ori_shape = [12, 14]
            self.repeat_times = [2, 3]
            self.infer_repeat_times = [-1, 3]
158 159 160


# Situation 3: repeat_times is a tensor
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
class XPUTestTileOpRank1_tensor(XPUOpTestWrapper):
    def __init__(self):
        self.op_name = 'tile'
        self.use_dynamic_create_class = False

    class TestTileOpRank1_tensor(XPUOpTest):
        def setUp(self):
            self.dtype = self.in_type
            self.__class__.no_need_check_grad = True
            self.place = paddle.XPUPlace(0)
            self.op_type = "tile"
            self.init_data()

            self.inputs = {
                'X': np.random.random(self.ori_shape).astype(self.dtype),
                'RepeatTimes': np.array(self.repeat_times).astype("int32"),
            }
            self.attrs = {}
            output = np.tile(self.inputs['X'], self.repeat_times)
            self.outputs = {'Out': output}

        def init_data(self):
            self.ori_shape = [100]
            self.repeat_times = [2]

        def test_check_output(self):
            self.check_output_with_place(self.place)

H
houj04 已提交
189 190 191
        def test_check_grad(self):
            self.check_grad_with_place(self.place, ['X'], 'Out')

192 193 194 195 196 197 198 199 200 201 202
    class TestTileOpRank2_tensor(TestTileOpRank1_tensor):
        def init_data(self):
            self.ori_shape = [12, 14]
            self.repeat_times = [2, 3]


support_types = get_xpu_op_support_types('tile')
for stype in support_types:
    create_test_class(globals(), XPUTestTileOpRank1, stype)
    create_test_class(globals(), XPUTestTileOpRank1_tensor_attr, stype)
    create_test_class(globals(), XPUTestTileOpRank1_tensor, stype)
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221


# Test python API
class TestTileAPI(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard(paddle.XPUPlace(0)):
            np_x = np.random.random([12, 14]).astype("float32")
            x = paddle.to_tensor(np_x)

            positive_2 = np.array([2]).astype("int32")
            positive_2 = paddle.to_tensor(positive_2)

            repeat_times = np.array([2, 3]).astype("int32")
            repeat_times = paddle.to_tensor(repeat_times)

            out_1 = paddle.tile(x, repeat_times=[2, 3])
            out_2 = paddle.tile(x, repeat_times=[positive_2, 3])
            out_3 = paddle.tile(x, repeat_times=repeat_times)

222 223 224
            np.testing.assert_array_equal(out_1.numpy(), np.tile(np_x, (2, 3)))
            np.testing.assert_array_equal(out_2.numpy(), np.tile(np_x, (2, 3)))
            np.testing.assert_array_equal(out_3.numpy(), np.tile(np_x, (2, 3)))
225 226


227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
class TestTileAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()

        x = paddle.rand([])
        x.stop_gradient = False

        out = paddle.tile(x, [])
        out.retain_grads()
        out.backward()
        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [])

        out = paddle.tile(x, [3])
        out.retain_grads()
        out.backward()
        self.assertEqual(out.shape, [3])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [3])

        out = paddle.tile(x, [2, 3])
        out.retain_grads()
        out.backward()
        self.assertEqual(out.shape, [2, 3])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [2, 3])

        paddle.enable_static()


258 259
if __name__ == "__main__":
    unittest.main()