Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7f93e2b0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7f93e2b0
编写于
3月 18, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
3月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update unittests for tile op and silce op on XPU, test=kunlun (#40227)
上级
86919910
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
299 addition
and
357 deletion
+299
-357
python/paddle/fluid/tests/unittests/xpu/test_slice_op_xpu.py
python/paddle/fluid/tests/unittests/xpu/test_slice_op_xpu.py
+159
-154
python/paddle/fluid/tests/unittests/xpu/test_tile_op_xpu.py
python/paddle/fluid/tests/unittests/xpu/test_tile_op_xpu.py
+140
-203
未找到文件。
python/paddle/fluid/tests/unittests/xpu/test_slice_op_xpu.py
浏览文件 @
7f93e2b0
...
...
@@ -18,169 +18,174 @@ import sys
import
unittest
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestSliceOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
"use_xpu"
:
True
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Out'
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestCase1
(
TestSliceOp
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:]
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestCase2
(
TestSliceOp
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
]
class
XPUTestSliceOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'slice'
self
.
use_dynamic_create_class
=
False
class
TestSliceOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
"use_xpu"
:
True
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
def
test_check_grad_normal
(
self
):
if
self
.
dtype
==
np
.
float16
:
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
)
else
:
user_defined_grad_outputs
=
np
.
random
.
random
(
self
.
out
.
shape
).
astype
(
self
.
dtype
)
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
user_defined_grad_outputs
=
user_defined_grad_outputs
)
class
TestCase1
(
TestSliceOp
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:]
class
TestCase2
(
TestSliceOp
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
]
# 1.2 with attr(decrease)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestSliceOp_decs_dim
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
"use_xpu"
:
True
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Out'
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestSliceOp_decs_dim_2
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
,
2
:
4
,
:]
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestSliceOp_decs_dim_3
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
-
1
,
0
,
2
]
self
.
ends
=
[
1000000
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
1
,
0
,
2
:
4
,
:]
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestSliceOp_decs_dim_4
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
7
]).
astype
(
"float32"
)
self
.
starts
=
[
0
,
1
,
2
,
3
]
self
.
ends
=
[
1
,
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
decrease_axis
=
[
0
,
1
,
2
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
0
,
1
,
2
,
3
:
4
]
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestSliceOp_decs_dim_5
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
-
1
]
self
.
ends
=
[
1000000
]
self
.
axes
=
[
3
]
self
.
decrease_axis
=
[
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[:,
:,
:,
-
1
]
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestSliceOp_decs_dim_6
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
0
,
1
,
2
,
3
]
self
.
ends
=
[
1
,
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
decrease_axis
=
[
0
,
1
,
2
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
0
,
1
,
2
,
3
:
4
]
class
XPUTestSliceOp_decs_dim
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'slice'
self
.
use_dynamic_create_class
=
False
class
TestSliceOp_decs_dim
(
XPUOpTest
):
def
setUp
(
self
):
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
"use_xpu"
:
True
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
if
self
.
dtype
==
np
.
float16
:
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
)
else
:
user_defined_grad_outputs
=
np
.
random
.
random
(
self
.
out
.
shape
).
astype
(
self
.
dtype
)
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
user_defined_grad_outputs
=
user_defined_grad_outputs
)
class
TestSliceOp_decs_dim_2
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
,
2
:
4
,
:]
class
TestSliceOp_decs_dim_3
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
-
1
,
0
,
2
]
self
.
ends
=
[
1000000
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
1
,
0
,
2
:
4
,
:]
class
TestSliceOp_decs_dim_4
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
7
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
0
,
1
,
2
,
3
]
self
.
ends
=
[
1
,
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
decrease_axis
=
[
0
,
1
,
2
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
0
,
1
,
2
,
3
:
4
]
class
TestSliceOp_decs_dim_5
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
-
1
]
self
.
ends
=
[
1000000
]
self
.
axes
=
[
3
]
self
.
decrease_axis
=
[
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[:,
:,
:,
-
1
]
class
TestSliceOp_decs_dim_6
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
0
,
1
,
2
,
3
]
self
.
ends
=
[
1
,
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
decrease_axis
=
[
0
,
1
,
2
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
0
,
1
,
2
,
3
:
4
]
support_types
=
get_xpu_op_support_types
(
'slice'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestSliceOp
,
stype
)
create_test_class
(
globals
(),
XPUTestSliceOp_decs_dim
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_tile_op_xpu.py
浏览文件 @
7f93e2b0
...
...
@@ -24,221 +24,158 @@ import paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
paddle.fluid
import
core
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
np
.
random
.
seed
(
10
)
#Situation 1: repeat_times is a list (without tensor)
class
TestTileOpRank1
(
XPUOpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"tile"
self
.
init_data
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
'repeat_times'
:
self
.
repeat_times
}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
self
.
repeat_times
)
self
.
outputs
=
{
'Out'
:
output
}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
init_data
(
self
):
self
.
ori_shape
=
[
100
]
self
.
repeat_times
=
[
2
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
#with dimension expanding
class
TestTileOpRank2Expanding
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
[
120
]
self
.
repeat_times
=
[
2
,
2
]
class
TestTileOpRank2
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
2
,
3
]
class
TestTileOpRank3_Corner
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
10
,
5
)
self
.
repeat_times
=
(
1
,
1
,
1
)
class
TestTileOpRank3_Corner2
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
10
,
5
)
self
.
repeat_times
=
(
2
,
2
)
class
TestTileOpRank3
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
4
,
15
)
self
.
repeat_times
=
(
2
,
1
,
4
)
class
TestTileOpRank4
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
4
,
5
,
7
)
self
.
repeat_times
=
(
3
,
2
,
1
,
2
)
class
XPUTestTileOpRank1
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'tile'
self
.
use_dynamic_create_class
=
False
class
TestTileOpRank1
(
XPUOpTest
):
def
setUp
(
self
):
self
.
dtype
=
self
.
in_type
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"tile"
self
.
init_data
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'repeat_times'
:
self
.
repeat_times
}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
self
.
repeat_times
)
self
.
outputs
=
{
'Out'
:
output
}
def
init_data
(
self
):
self
.
ori_shape
=
[
100
]
self
.
repeat_times
=
[
2
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
#with dimension expanding
class
TestTileOpRank2Expanding
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
[
120
]
self
.
repeat_times
=
[
2
,
2
]
class
TestTileOpRank2
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
2
,
3
]
class
TestTileOpRank3_Corner
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
10
,
5
)
self
.
repeat_times
=
(
1
,
1
,
1
)
class
TestTileOpRank3_Corner2
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
10
,
5
)
self
.
repeat_times
=
(
2
,
2
)
class
TestTileOpRank3
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
4
,
15
)
self
.
repeat_times
=
(
2
,
1
,
4
)
class
TestTileOpRank4
(
TestTileOpRank1
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
4
,
5
,
7
)
self
.
repeat_times
=
(
3
,
2
,
1
,
2
)
# Situation 2: repeat_times is a list (with tensor)
class
TestTileOpRank1_tensor_attr
(
XPUOpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"tile"
self
.
init_data
()
repeat_times_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
repeat_times
):
repeat_times_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
),
'repeat_times_tensor'
:
repeat_times_tensor
,
}
self
.
attrs
=
{
"repeat_times"
:
self
.
infer_repeat_times
}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
self
.
repeat_times
)
self
.
outputs
=
{
'Out'
:
output
}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
init_data
(
self
):
self
.
ori_shape
=
[
100
]
self
.
repeat_times
=
[
2
]
self
.
infer_repeat_times
=
[
-
1
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
class
TestTileOpRank2_Corner_tensor_attr
(
TestTileOpRank1_tensor_attr
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
1
,
1
]
self
.
infer_repeat_times
=
[
1
,
-
1
]
class
TestTileOpRank2_attr_tensor
(
TestTileOpRank1_tensor_attr
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
2
,
3
]
self
.
infer_repeat_times
=
[
-
1
,
3
]
class
XPUTestTileOpRank1_tensor_attr
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'tile'
self
.
use_dynamic_create_class
=
False
class
TestTileOpRank1_tensor_attr
(
XPUOpTest
):
def
setUp
(
self
):
self
.
dtype
=
self
.
in_type
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"tile"
self
.
init_data
()
repeat_times_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
repeat_times
):
repeat_times_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
self
.
dtype
),
'repeat_times_tensor'
:
repeat_times_tensor
,
}
self
.
attrs
=
{
"repeat_times"
:
self
.
infer_repeat_times
}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
self
.
repeat_times
)
self
.
outputs
=
{
'Out'
:
output
}
def
init_data
(
self
):
self
.
ori_shape
=
[
100
]
self
.
repeat_times
=
[
2
]
self
.
infer_repeat_times
=
[
-
1
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestTileOpRank2_Corner_tensor_attr
(
TestTileOpRank1_tensor_attr
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
1
,
1
]
self
.
infer_repeat_times
=
[
1
,
-
1
]
class
TestTileOpRank2_attr_tensor
(
TestTileOpRank1_tensor_attr
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
2
,
3
]
self
.
infer_repeat_times
=
[
-
1
,
3
]
# Situation 3: repeat_times is a tensor
class
TestTileOpRank1_tensor
(
XPUOpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"tile"
self
.
init_data
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
),
'RepeatTimes'
:
np
.
array
(
self
.
repeat_times
).
astype
(
"int32"
),
}
self
.
attrs
=
{}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
self
.
repeat_times
)
self
.
outputs
=
{
'Out'
:
output
}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
init_data
(
self
):
self
.
ori_shape
=
[
100
]
self
.
repeat_times
=
[
2
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
pass
class
TestTileOpRank2_tensor
(
TestTileOpRank1_tensor
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
2
,
3
]
# Situation 4: input x is Integer
class
TestTileOpInteger
(
XPUOpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"tile"
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
10
,
size
=
(
4
,
4
,
5
)).
astype
(
"int32"
)
}
self
.
attrs
=
{
'repeat_times'
:
[
2
,
1
,
4
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
2
,
1
,
4
))
self
.
outputs
=
{
'Out'
:
output
}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# Situation 5: input x is Integer
class
TestTileOpInt64_t
(
XPUOpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"tile"
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
10
,
size
=
(
2
,
4
,
5
)).
astype
(
"int64"
)
}
self
.
attrs
=
{
'repeat_times'
:
[
2
,
1
,
4
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
2
,
1
,
4
))
self
.
outputs
=
{
'Out'
:
output
}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# Situation 6: input x is Bool
class
TestTileOpBool
(
XPUOpTest
):
def
setUp
(
self
):
self
.
set_xpu
()
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"tile"
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
10
,
size
=
(
2
,
4
,
5
)).
astype
(
"bool"
)
}
self
.
attrs
=
{
'repeat_times'
:
[
2
,
1
,
4
]}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
(
2
,
1
,
4
))
self
.
outputs
=
{
'Out'
:
output
}
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
XPUTestTileOpRank1_tensor
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'tile'
self
.
use_dynamic_create_class
=
False
class
TestTileOpRank1_tensor
(
XPUOpTest
):
def
setUp
(
self
):
self
.
dtype
=
self
.
in_type
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"tile"
self
.
init_data
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
self
.
dtype
),
'RepeatTimes'
:
np
.
array
(
self
.
repeat_times
).
astype
(
"int32"
),
}
self
.
attrs
=
{}
output
=
np
.
tile
(
self
.
inputs
[
'X'
],
self
.
repeat_times
)
self
.
outputs
=
{
'Out'
:
output
}
def
init_data
(
self
):
self
.
ori_shape
=
[
100
]
self
.
repeat_times
=
[
2
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestTileOpRank2_tensor
(
TestTileOpRank1_tensor
):
def
init_data
(
self
):
self
.
ori_shape
=
[
12
,
14
]
self
.
repeat_times
=
[
2
,
3
]
support_types
=
get_xpu_op_support_types
(
'tile'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestTileOpRank1
,
stype
)
create_test_class
(
globals
(),
XPUTestTileOpRank1_tensor_attr
,
stype
)
create_test_class
(
globals
(),
XPUTestTileOpRank1_tensor
,
stype
)
# Test python API
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录