nll_loss_kernel.cc 3.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/nll_loss_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void NllLossRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& label,
                      const paddle::optional<DenseTensor>& weight,
                      int64_t ignore_index,
                      const std::string& reduction,
                      DenseTensor* out,
                      DenseTensor* total_weight) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  const auto& label_type = label.dtype();
  bool label_type_match =
      label_type == phi::DataType::INT32 || label_type == phi::DataType::INT64;
  PADDLE_ENFORCE_EQ(label_type_match,
                    true,
                    phi::errors::InvalidArgument(
                        "Input(Label) holds the wrong type, it holds %s, but "
                        "desires to be %s or %s",
                        label_type,
                        phi::DataType::INT32,
                        phi::DataType::INT64));

  auto x_data = x.data<XPUType>();
  auto out_data = dev_ctx.template Alloc<XPUType>(out);

  auto weight_data =
      weight.get_ptr() ? weight.get_ptr()->data<XPUType>() : nullptr;

  auto total_weight_data = dev_ctx.template Alloc<XPUType>(total_weight);

  auto x_dims = x.dims();
  std::vector<int64_t> x_shape = phi::vectorize<int64_t>(x_dims);

  int64_t reduction_id = 0;
  if (reduction == "none") {
    reduction_id = 0;
  } else if (reduction == "mean") {
    reduction_id = 1;
  } else if (reduction == "sum") {
    reduction_id = 2;
  }

  int r;
  if (label_type == phi::DataType::INT32) {
    const int* label_data = label.data<int>();
    r = xpu::nll_loss(dev_ctx.x_context(),
                      x_data,
                      out_data,
                      total_weight_data,
                      x_shape,
                      label_data,
                      weight_data,
                      reduction_id,
                      ignore_index);
  } else if (label_type == phi::DataType::INT64) {
    const int64_t* label_data = label.data<int64_t>();
    r = xpu::nll_loss(dev_ctx.x_context(),
                      x_data,
                      out_data,
                      total_weight_data,
                      x_shape,
                      label_data,
                      weight_data,
                      reduction_id,
                      ignore_index);
  }
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "nll_loss");
}

}  // namespace phi

// TODO(xiongkun): add the non-raw kernel register here.
PD_REGISTER_KERNEL(nll_loss, XPU, ALL_LAYOUT, phi::NllLossRawKernel, float) {}