Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
73d706ce
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
73d706ce
编写于
5月 23, 2023
作者:
R
RuohengMa
提交者:
GitHub
5月 23, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PHI] bind nll_loss xpu kernel (#54043)
上级
626ea800
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
479 addition
and
1 deletion
+479
-1
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+1
-1
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+2
-0
paddle/phi/kernels/xpu/nll_loss_grad_kernel.cc
paddle/phi/kernels/xpu/nll_loss_grad_kernel.cc
+95
-0
paddle/phi/kernels/xpu/nll_loss_kernel.cc
paddle/phi/kernels/xpu/nll_loss_kernel.cc
+93
-0
test/xpu/test_nll_loss_op_xpu.py
test/xpu/test_nll_loss_op_xpu.py
+288
-0
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
73d706ce
...
...
@@ -8,7 +8,7 @@ set(XPU_API_LIB_NAME "libxpuapi.so")
set
(
XPU_RT_LIB_NAME
"libxpurt.so"
)
set
(
XPU_XFT_LIB_NAME
"libxft.so"
)
set
(
XPU_BASE_DATE
"202305
19
"
)
set
(
XPU_BASE_DATE
"202305
23
"
)
set
(
XPU_XCCL_BASE_VERSION
"1.0.49.2"
)
set
(
XPU_XFT_BASE_VERSION
"latest"
)
...
...
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
73d706ce
...
...
@@ -525,6 +525,8 @@ XPUOpMap& get_kl2_ops() {
phi
::
DataType
::
FLOAT16
,
phi
::
DataType
::
INT64
})},
{
"nearest_interp_v2_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"nll_loss"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"nll_loss_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"not_equal"
,
XPUKernelSet
({
phi
::
DataType
::
INT64
,
phi
::
DataType
::
INT32
,
...
...
paddle/phi/kernels/xpu/nll_loss_grad_kernel.cc
0 → 100644
浏览文件 @
73d706ce
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/nll_loss_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
NllLossGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
label
,
const
paddle
::
optional
<
DenseTensor
>&
weight
,
const
DenseTensor
&
total_weight
,
const
DenseTensor
&
d_out
,
int64_t
ignore_index
,
const
std
::
string
&
reduction
,
DenseTensor
*
d_x
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
auto
&
label_type
=
label
.
dtype
();
bool
label_type_match
=
label_type
==
phi
::
DataType
::
INT32
||
label_type
==
phi
::
DataType
::
INT64
;
PADDLE_ENFORCE_EQ
(
label_type_match
,
true
,
phi
::
errors
::
InvalidArgument
(
"Input(Label) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
label_type
,
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT64
));
auto
d_out_data
=
d_out
.
data
<
XPUType
>
();
auto
d_x_data
=
dev_ctx
.
template
Alloc
<
XPUType
>(
d_x
);
auto
d_x_dims
=
d_x
->
dims
();
std
::
vector
<
int64_t
>
d_x_shape
=
phi
::
vectorize
<
int64_t
>
(
d_x_dims
);
auto
weight_data
=
weight
.
get_ptr
()
?
weight
.
get_ptr
()
->
data
<
float
>
()
:
nullptr
;
int64_t
reduction_id
=
0
;
if
(
reduction
==
"none"
)
{
reduction_id
=
0
;
}
else
if
(
reduction
==
"mean"
)
{
reduction_id
=
1
;
}
else
if
(
reduction
==
"sum"
)
{
reduction_id
=
2
;
}
auto
total_weight_data
=
total_weight
.
data
<
XPUType
>
();
int
r
;
if
(
label_type
==
phi
::
DataType
::
INT32
)
{
const
int
*
label_data
=
label
.
data
<
int
>
();
r
=
xpu
::
nll_loss_grad
(
dev_ctx
.
x_context
(),
d_out_data
,
d_x_data
,
d_x_shape
,
label_data
,
weight_data
,
reduction_id
,
ignore_index
,
total_weight_data
);
}
else
if
(
label_type
==
phi
::
DataType
::
INT64
)
{
const
int64_t
*
label_data
=
label
.
data
<
int64_t
>
();
r
=
xpu
::
nll_loss_grad
(
dev_ctx
.
x_context
(),
d_out_data
,
d_x_data
,
d_x_shape
,
label_data
,
weight_data
,
reduction_id
,
ignore_index
,
total_weight_data
);
}
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"nll_loss_grad"
);
}
}
// namespace phi
// TODO(xiongkun): add the non-raw kernel register here.
PD_REGISTER_KERNEL
(
nll_loss_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
NllLossGradKernel
,
float
)
{}
paddle/phi/kernels/xpu/nll_loss_kernel.cc
0 → 100644
浏览文件 @
73d706ce
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/nll_loss_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
NllLossRawKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
label
,
const
paddle
::
optional
<
DenseTensor
>&
weight
,
int64_t
ignore_index
,
const
std
::
string
&
reduction
,
DenseTensor
*
out
,
DenseTensor
*
total_weight
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
auto
&
label_type
=
label
.
dtype
();
bool
label_type_match
=
label_type
==
phi
::
DataType
::
INT32
||
label_type
==
phi
::
DataType
::
INT64
;
PADDLE_ENFORCE_EQ
(
label_type_match
,
true
,
phi
::
errors
::
InvalidArgument
(
"Input(Label) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
label_type
,
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT64
));
auto
x_data
=
x
.
data
<
XPUType
>
();
auto
out_data
=
dev_ctx
.
template
Alloc
<
XPUType
>(
out
);
auto
weight_data
=
weight
.
get_ptr
()
?
weight
.
get_ptr
()
->
data
<
XPUType
>
()
:
nullptr
;
auto
total_weight_data
=
dev_ctx
.
template
Alloc
<
XPUType
>(
total_weight
);
auto
x_dims
=
x
.
dims
();
std
::
vector
<
int64_t
>
x_shape
=
phi
::
vectorize
<
int64_t
>
(
x_dims
);
int64_t
reduction_id
=
0
;
if
(
reduction
==
"none"
)
{
reduction_id
=
0
;
}
else
if
(
reduction
==
"mean"
)
{
reduction_id
=
1
;
}
else
if
(
reduction
==
"sum"
)
{
reduction_id
=
2
;
}
int
r
;
if
(
label_type
==
phi
::
DataType
::
INT32
)
{
const
int
*
label_data
=
label
.
data
<
int
>
();
r
=
xpu
::
nll_loss
(
dev_ctx
.
x_context
(),
x_data
,
out_data
,
total_weight_data
,
x_shape
,
label_data
,
weight_data
,
reduction_id
,
ignore_index
);
}
else
if
(
label_type
==
phi
::
DataType
::
INT64
)
{
const
int64_t
*
label_data
=
label
.
data
<
int64_t
>
();
r
=
xpu
::
nll_loss
(
dev_ctx
.
x_context
(),
x_data
,
out_data
,
total_weight_data
,
x_shape
,
label_data
,
weight_data
,
reduction_id
,
ignore_index
);
}
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"nll_loss"
);
}
}
// namespace phi
// TODO(xiongkun): add the non-raw kernel register here.
PD_REGISTER_KERNEL
(
nll_loss
,
XPU
,
ALL_LAYOUT
,
phi
::
NllLossRawKernel
,
float
)
{}
test/xpu/test_nll_loss_op_xpu.py
0 → 100644
浏览文件 @
73d706ce
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
get_test_cover_info
import
(
XPUOpTestWrapper
,
create_test_class
,
get_xpu_op_support_types
,
)
from
op_test_xpu
import
XPUOpTest
import
paddle
paddle
.
enable_static
()
def
nll_loss_1d
(
logs
,
dtype
,
targets
,
weight
=
None
,
reduction
=
'mean'
,
ignore_index
=-
100
):
input_shape
=
logs
.
shape
N
=
input_shape
[
0
]
C
=
input_shape
[
1
]
out
=
np
.
zeros_like
(
targets
).
astype
(
dtype
)
total_weight
=
0
for
i
in
range
(
N
):
cur_target
=
targets
[
i
]
if
cur_target
==
ignore_index
:
out
[
i
]
=
0
continue
cur_weight
=
weight
[
cur_target
]
if
weight
is
not
None
else
1
total_weight
+=
cur_weight
out
[
i
]
=
-
logs
[
i
][
cur_target
]
*
cur_weight
if
reduction
==
'sum'
:
out
=
np
.
sum
(
out
)
total_weight
=
np
.
array
([
total_weight
]).
astype
(
dtype
)
return
{
'Out'
:
out
,
'Total_weight'
:
total_weight
}
elif
reduction
==
'mean'
:
out
=
np
.
sum
(
out
)
if
total_weight
!=
0
:
out
/=
total_weight
total_weight
=
np
.
array
([
total_weight
]).
astype
(
dtype
)
return
{
'Out'
:
out
,
'Total_weight'
:
total_weight
}
elif
reduction
==
'none'
:
total_weight
=
np
.
array
([
0
]).
astype
(
dtype
)
return
{
'Out'
:
out
,
'Total_weight'
:
total_weight
}
def
nll_loss_2d
(
logs
,
dtype
,
targets
,
weight
=
None
,
reduction
=
'mean'
,
ignore_index
=-
100
):
input_shape
=
logs
.
shape
N
=
input_shape
[
0
]
H
=
input_shape
[
2
]
W
=
input_shape
[
3
]
out
=
np
.
zeros_like
(
targets
).
astype
(
dtype
)
total_weight
=
0
for
i
in
range
(
N
):
for
h
in
range
(
H
):
for
w
in
range
(
W
):
cur_target
=
targets
[
i
][
h
][
w
]
if
cur_target
==
ignore_index
:
out
[
i
][
h
][
w
]
=
0
continue
cur_weight
=
weight
[
cur_target
]
if
weight
is
not
None
else
1
total_weight
+=
cur_weight
out
[
i
][
h
][
w
]
=
-
logs
[
i
][
cur_target
][
h
][
w
]
*
cur_weight
if
reduction
==
'sum'
:
out
=
np
.
sum
(
out
)
total_weight
=
np
.
array
([
total_weight
]).
astype
(
dtype
)
return
{
'Out'
:
out
,
'Total_weight'
:
total_weight
}
elif
reduction
==
'mean'
:
out
=
np
.
sum
(
out
)
if
total_weight
!=
0
:
out
/=
total_weight
total_weight
=
np
.
array
([
total_weight
]).
astype
(
dtype
)
return
{
'Out'
:
out
,
'Total_weight'
:
total_weight
}
elif
reduction
==
'none'
:
total_weight
=
np
.
array
([
0
]).
astype
(
dtype
)
return
{
'Out'
:
out
,
'Total_weight'
:
total_weight
}
class
XPUTestNLLLossOP
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'nll_loss'
self
.
use_dynamic_create_class
=
False
class
TestNLLLossOpBase1D
(
XPUOpTest
):
op_type
=
'nll_loss'
def
setUp
(
self
):
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
set_attrs
()
self
.
set_inputs
()
self
.
inputs
=
{
'X'
:
self
.
x
,
'Label'
:
self
.
label
,
}
if
self
.
weight
is
not
None
:
self
.
inputs
[
'Weight'
]
=
self
.
weight
self
.
outputs
=
nll_loss_1d
(
self
.
x
,
self
.
dtype
,
self
.
label
,
self
.
weight
,
self
.
attrs
[
'reduction'
],
)
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'none'
}
def
set_inputs
(
self
):
self
.
class_num
=
3
x_shape
=
[
5
,
self
.
class_num
]
label_shape
=
[
5
]
self
.
x
=
np
.
random
.
random
(
x_shape
).
astype
(
self
.
dtype
)
self
.
label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
label_shape
).
astype
(
np
.
int64
)
self
.
weight
=
np
.
random
.
random
(
self
.
class_num
).
astype
(
self
.
dtype
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
class
TestNLLLossOpWithWeightMean1D
(
TestNLLLossOpBase1D
):
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'mean'
}
class
TestNLLLossOpWithWeightSum1D
(
TestNLLLossOpBase1D
):
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'sum'
}
class
TestNLLLossOpWithoutWeightNone1D
(
TestNLLLossOpBase1D
):
def
set_inputs
(
self
):
self
.
class_num
=
3
x_shape
=
[
5
,
self
.
class_num
]
label_shape
=
[
5
]
self
.
x
=
np
.
random
.
random
(
x_shape
).
astype
(
self
.
dtype
)
self
.
label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
label_shape
).
astype
(
np
.
int64
)
self
.
weight
=
None
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'none'
}
class
TestNLLLossOpWithoutWeightMean1D
(
TestNLLLossOpBase1D
):
def
set_inputs
(
self
):
self
.
class_num
=
3
x_shape
=
[
5
,
self
.
class_num
]
label_shape
=
[
5
]
self
.
x
=
np
.
random
.
random
(
x_shape
).
astype
(
self
.
dtype
)
self
.
label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
label_shape
).
astype
(
np
.
int64
)
self
.
weight
=
None
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'mean'
}
class
TestNLLLossOpWithoutWeightSum1D
(
TestNLLLossOpBase1D
):
def
set_inputs
(
self
):
self
.
class_num
=
3
x_shape
=
[
5
,
self
.
class_num
]
label_shape
=
[
5
]
self
.
x
=
np
.
random
.
random
(
x_shape
).
astype
(
self
.
dtype
)
self
.
label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
label_shape
).
astype
(
np
.
int64
)
self
.
weight
=
None
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'sum'
}
class
TestNLLLossOpBase2D
(
XPUOpTest
):
op_type
=
'nll_loss'
def
setUp
(
self
):
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
set_attrs
()
self
.
set_inputs
()
self
.
inputs
=
{
'X'
:
self
.
x
,
'Label'
:
self
.
label
}
if
self
.
weight
is
not
None
:
self
.
inputs
[
'Weight'
]
=
self
.
weight
self
.
outputs
=
nll_loss_2d
(
self
.
x
,
self
.
dtype
,
self
.
label
,
self
.
weight
,
self
.
attrs
[
'reduction'
],
)
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'none'
}
def
set_inputs
(
self
):
self
.
class_num
=
3
x_shape
=
[
5
,
self
.
class_num
,
7
,
11
]
label_shape
=
[
5
,
7
,
11
]
self
.
x
=
np
.
random
.
random
(
x_shape
).
astype
(
self
.
dtype
)
self
.
label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
label_shape
).
astype
(
np
.
int64
)
self
.
weight
=
np
.
random
.
random
(
self
.
class_num
).
astype
(
self
.
dtype
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
class
TestNLLLossOpWithWeightMean2D
(
TestNLLLossOpBase2D
):
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'mean'
}
class
TestNLLLossOpWithWeightSum2D
(
TestNLLLossOpBase2D
):
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'sum'
}
class
TestNLLLossOpWithoutWeightNone2D
(
TestNLLLossOpBase2D
):
def
set_inputs
(
self
):
self
.
dtype
=
self
.
in_type
self
.
class_num
=
3
x_shape
=
[
5
,
self
.
class_num
,
7
,
11
]
label_shape
=
[
5
,
7
,
11
]
self
.
x
=
np
.
random
.
random
(
x_shape
).
astype
(
self
.
dtype
)
self
.
label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
label_shape
).
astype
(
np
.
int64
)
self
.
weight
=
None
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'none'
}
class
TestNLLLossOpWithoutWeightMean2D
(
TestNLLLossOpBase2D
):
def
set_inputs
(
self
):
self
.
dtype
=
self
.
in_type
self
.
class_num
=
3
x_shape
=
[
5
,
self
.
class_num
,
7
,
11
]
label_shape
=
[
5
,
7
,
11
]
self
.
x
=
np
.
random
.
random
(
x_shape
).
astype
(
self
.
dtype
)
self
.
label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
label_shape
).
astype
(
np
.
int64
)
self
.
weight
=
None
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'mean'
}
class
TestNLLLossOpWithoutWeightSum2D
(
TestNLLLossOpBase2D
):
def
set_inputs
(
self
):
self
.
dtype
=
self
.
in_type
self
.
class_num
=
3
x_shape
=
[
5
,
self
.
class_num
,
7
,
11
]
label_shape
=
[
5
,
7
,
11
]
self
.
x
=
np
.
random
.
random
(
x_shape
).
astype
(
self
.
dtype
)
self
.
label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
label_shape
).
astype
(
np
.
int64
)
self
.
weight
=
None
def
set_attrs
(
self
):
self
.
attrs
=
{
'reduction'
:
'sum'
}
support_types
=
get_xpu_op_support_types
(
'nll_loss'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestNLLLossOP
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录