c_embedding_op.cu 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/collective/c_embedding_op.h"
16
#include "paddle/fluid/framework/convert_utils.h"
17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/float16.h"
20
#include "paddle/phi/backends/gpu/gpu_primitives.h"
21
#include "paddle/phi/kernels/funcs/embedding_grad.h"
22

23
DECLARE_int64(embedding_deterministic);
C
Chitsing KUI 已提交
24

25 26 27 28 29 30 31 32 33 34 35 36
namespace paddle {
namespace operators {

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <typename T, typename IndexT>
37 38 39 40 41 42 43 44
__global__ void CEmbedding(T *out,
                           const T *table,
                           const IndexT *ids,
                           const int rows,
                           const int columns,
                           const int64_t N,
                           const int64_t start_idx,
                           const int64_t end_idx,
45 46 47 48 49 50 51 52 53 54 55 56 57
                           const int64_t limit) {
  CUDA_KERNEL_LOOP(i, limit) {
    size_t row = i / columns;
    size_t col = i % columns;
    auto id = ids[row];

    if (id >= start_idx && id < end_idx) {
      auto real_idx = id - start_idx;
      PADDLE_ENFORCE(real_idx < N,
                     "The index is out of bounds, "
                     "please check whether the dimensions of index and "
                     "input meet the requirements. It should "
                     "be less than [%d], but received [%d]",
58 59
                     N,
                     real_idx);
60 61 62 63 64 65 66 67
      out[i] = table[real_idx * columns + col];
    } else {
      out[i] = static_cast<T>(0);
    }
  }
}

template <typename T, typename IndexT>
68 69 70 71 72 73 74 75 76
__global__ void CEmbeddingGrad(T *table,
                               const T *output,
                               const IndexT *ids,
                               const int rows,
                               const int columns,
                               const int64_t N,
                               const int64_t start_idx,
                               const int64_t end_idx,
                               const int64_t limit) {
77 78 79 80 81 82
  CUDA_KERNEL_LOOP(i, limit) {
    size_t row = i / columns;
    size_t col = i % columns;
    auto id = ids[row];
    if (id >= start_idx && id < end_idx) {
      auto real_idx = id - start_idx;
83
      phi::CudaAtomicAdd(&table[real_idx * columns + col], output[i]);
84 85 86 87
    }
  }
}

88
template <typename T, typename DeviceContext>
89 90 91
class CEmbeddingCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
92 93 94
    auto *table_t = context.Input<phi::DenseTensor>("W");
    auto *ids_t = context.Input<phi::DenseTensor>("Ids");
    auto *output_t = context.Output<phi::DenseTensor>("Out");
95

L
Leo Chen 已提交
96
    const auto &dev_ctx = context.template device_context<phi::GPUContext>();
97 98 99 100 101 102 103 104 105 106 107 108 109 110
    const int64_t start_idx = context.Attr<int64_t>("start_index");
    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
    size_t K = ids_t->numel();

    const int64_t end_idx = start_idx + N;

    auto *table = table_t->data<T>();
    auto *output = output_t->mutable_data<T>(context.GetPlace());

    auto limit = K * D;
    int blocks = NumBlocks(limit);
    int threads = kNumCUDAThreads;

111
    const auto &index_type = framework::TransToProtoVarType(ids_t->dtype());
112
    if (index_type == framework::proto::VarType::INT32) {
113 114 115 116 117 118 119 120 121 122
      CEmbedding<T, int32_t>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(output,
                                                     table,
                                                     ids_t->data<int32_t>(),
                                                     K,
                                                     D,
                                                     N,
                                                     start_idx,
                                                     end_idx,
                                                     limit);
123 124

    } else if (index_type == framework::proto::VarType::INT64) {
125 126 127 128 129 130 131 132 133 134
      CEmbedding<T, int64_t>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(output,
                                                     table,
                                                     ids_t->data<int64_t>(),
                                                     K,
                                                     D,
                                                     N,
                                                     start_idx,
                                                     end_idx,
                                                     limit);
B
Baibaifan 已提交
135 136 137
    } else {
      PADDLE_THROW(platform::errors::Unavailable(
          "GPU c_embedding ids only support int32 or int64."));
138 139 140 141
    }
  }
};

142
template <typename T, typename DeviceContext>
143 144 145
class CEmbeddingGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
L
Leo Chen 已提交
146
    const auto &dev_ctx = context.template device_context<phi::GPUContext>();
147
    const int64_t start_idx = context.Attr<int64_t>("start_index");
148 149 150 151 152
    auto ids_t = context.Input<phi::DenseTensor>("Ids");
    auto d_output_t =
        context.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto d_table_t =
        context.Output<phi::DenseTensor>(framework::GradVarName("W"));
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    int N = d_table_t->dims()[0];
    int D = d_table_t->dims()[1];
    int K = ids_t->numel();

    auto limit = K * D;
    int blocks = NumBlocks(limit);
    int threads = kNumCUDAThreads;

    const T *d_output = d_output_t->data<T>();
    T *d_table = d_table_t->mutable_data<T>(context.GetPlace());

    auto t = framework::EigenVector<T>::Flatten(*d_table_t);
    t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));

168
    const auto &index_type = framework::TransToProtoVarType(ids_t->dtype());
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    if (FLAGS_embedding_deterministic == 1) {
      if (index_type == framework::proto::VarType::INT32) {
        phi::funcs::LaunchEmbeddingGradDeterministicKernel<T, int32_t>(
            dev_ctx,
            ids_t->data<int32_t>(),
            d_output,
            d_table,
            N,
            D,
            K,
            start_idx);
        return;
      } else if (index_type == framework::proto::VarType::INT64) {
        phi::funcs::LaunchEmbeddingGradDeterministicKernel<T, int64_t>(
            dev_ctx,
            ids_t->data<int64_t>(),
            d_output,
            d_table,
            N,
            D,
            K,
            start_idx);
        return;
      }
    } else {
      if (FLAGS_embedding_deterministic > 1) {
        VLOG(2) << "Run grad kernel of embedding with single thread.";
        blocks = 1;
      }
      const int64_t end_idx = start_idx + N;
      if (index_type == framework::proto::VarType::INT32) {
        CEmbeddingGrad<T, int32_t>
            <<<blocks, threads, 0, dev_ctx.stream()>>>(d_table,
                                                       d_output,
                                                       ids_t->data<int32_t>(),
                                                       K,
                                                       D,
                                                       N,
                                                       start_idx,
                                                       end_idx,
                                                       limit);
        return;
      } else if (index_type == framework::proto::VarType::INT64) {
        CEmbeddingGrad<T, int64_t>
            <<<blocks, threads, 0, dev_ctx.stream()>>>(d_table,
                                                       d_output,
                                                       ids_t->data<int64_t>(),
                                                       K,
                                                       D,
                                                       N,
                                                       start_idx,
                                                       end_idx,
                                                       limit);
        return;
      }
224
    }
225 226
    PADDLE_THROW(phi::errors::InvalidArgument(
        "The data type of Input(Ids) must be int32 or int64."));
227 228 229 230 231 232 233 234
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
235 236 237 238 239 240 241

PD_REGISTER_STRUCT_KERNEL(c_embedding,
                          GPU,
                          ALL_LAYOUT,
                          ops::CEmbeddingCUDAKernel,
                          float,
                          double,
242
#if NCCL_VERSION_CODE >= 21000
243
                          plat::bfloat16,
244
#endif
245 246 247 248 249 250 251 252 253
                          plat::float16) {
}

PD_REGISTER_STRUCT_KERNEL(c_embedding_grad,
                          GPU,
                          ALL_LAYOUT,
                          ops::CEmbeddingGradCUDAKernel,
                          float,
                          double,
254
#if NCCL_VERSION_CODE >= 21000
255
                          plat::bfloat16,
256
#endif
257 258
                          plat::float16) {
}