c_embedding_op.cu 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/collective/c_embedding_op.h"
16
#include "paddle/fluid/framework/convert_utils.h"
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <typename T, typename IndexT>
34 35 36 37 38 39 40 41
__global__ void CEmbedding(T *out,
                           const T *table,
                           const IndexT *ids,
                           const int rows,
                           const int columns,
                           const int64_t N,
                           const int64_t start_idx,
                           const int64_t end_idx,
42 43 44 45 46 47 48 49 50 51 52 53 54
                           const int64_t limit) {
  CUDA_KERNEL_LOOP(i, limit) {
    size_t row = i / columns;
    size_t col = i % columns;
    auto id = ids[row];

    if (id >= start_idx && id < end_idx) {
      auto real_idx = id - start_idx;
      PADDLE_ENFORCE(real_idx < N,
                     "The index is out of bounds, "
                     "please check whether the dimensions of index and "
                     "input meet the requirements. It should "
                     "be less than [%d], but received [%d]",
55 56
                     N,
                     real_idx);
57 58 59 60 61 62 63 64
      out[i] = table[real_idx * columns + col];
    } else {
      out[i] = static_cast<T>(0);
    }
  }
}

template <typename T, typename IndexT>
65 66 67 68 69 70 71 72 73
__global__ void CEmbeddingGrad(T *table,
                               const T *output,
                               const IndexT *ids,
                               const int rows,
                               const int columns,
                               const int64_t N,
                               const int64_t start_idx,
                               const int64_t end_idx,
                               const int64_t limit) {
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  CUDA_KERNEL_LOOP(i, limit) {
    size_t row = i / columns;
    size_t col = i % columns;
    auto id = ids[row];
    if (id >= start_idx && id < end_idx) {
      auto real_idx = id - start_idx;
      paddle::platform::CudaAtomicAdd(&table[real_idx * columns + col],
                                      output[i]);
    }
  }
}

template <typename T>
class CEmbeddingCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_t = context.Input<LoDTensor>("W");
    auto *ids_t = context.Input<LoDTensor>("Ids");
    auto *output_t = context.Output<LoDTensor>("Out");

L
Leo Chen 已提交
94
    const auto &dev_ctx = context.template device_context<phi::GPUContext>();
95 96 97 98 99 100 101 102 103 104 105 106 107 108
    const int64_t start_idx = context.Attr<int64_t>("start_index");
    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
    size_t K = ids_t->numel();

    const int64_t end_idx = start_idx + N;

    auto *table = table_t->data<T>();
    auto *output = output_t->mutable_data<T>(context.GetPlace());

    auto limit = K * D;
    int blocks = NumBlocks(limit);
    int threads = kNumCUDAThreads;

109
    const auto &index_type = framework::TransToProtoVarType(ids_t->dtype());
110
    if (index_type == framework::proto::VarType::INT32) {
111 112 113 114 115 116 117 118 119 120
      CEmbedding<T, int32_t>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(output,
                                                     table,
                                                     ids_t->data<int32_t>(),
                                                     K,
                                                     D,
                                                     N,
                                                     start_idx,
                                                     end_idx,
                                                     limit);
121 122

    } else if (index_type == framework::proto::VarType::INT64) {
123 124 125 126 127 128 129 130 131 132
      CEmbedding<T, int64_t>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(output,
                                                     table,
                                                     ids_t->data<int64_t>(),
                                                     K,
                                                     D,
                                                     N,
                                                     start_idx,
                                                     end_idx,
                                                     limit);
B
Baibaifan 已提交
133 134 135
    } else {
      PADDLE_THROW(platform::errors::Unavailable(
          "GPU c_embedding ids only support int32 or int64."));
136 137 138 139 140 141 142 143
    }
  }
};

template <typename T>
class CEmbeddingGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
L
Leo Chen 已提交
144
    const auto &dev_ctx = context.template device_context<phi::GPUContext>();
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    const int64_t start_idx = context.Attr<int64_t>("start_index");
    auto ids_t = context.Input<LoDTensor>("Ids");
    auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));

    int N = d_table_t->dims()[0];
    int D = d_table_t->dims()[1];
    int K = ids_t->numel();

    const int64_t end_idx = start_idx + N;
    auto limit = K * D;
    int blocks = NumBlocks(limit);
    int threads = kNumCUDAThreads;

    const T *d_output = d_output_t->data<T>();
    T *d_table = d_table_t->mutable_data<T>(context.GetPlace());

    auto t = framework::EigenVector<T>::Flatten(*d_table_t);
    t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));

165
    const auto &index_type = framework::TransToProtoVarType(ids_t->dtype());
166
    if (index_type == framework::proto::VarType::INT32) {
167 168 169 170 171 172 173 174 175 176
      CEmbeddingGrad<T, int32_t>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(d_table,
                                                     d_output,
                                                     ids_t->data<int32_t>(),
                                                     K,
                                                     D,
                                                     N,
                                                     start_idx,
                                                     end_idx,
                                                     limit);
177
    } else if (index_type == framework::proto::VarType::INT64) {
178 179 180 181 182 183 184 185 186 187
      CEmbeddingGrad<T, int64_t>
          <<<blocks, threads, 0, dev_ctx.stream()>>>(d_table,
                                                     d_output,
                                                     ids_t->data<int64_t>(),
                                                     K,
                                                     D,
                                                     N,
                                                     start_idx,
                                                     end_idx,
                                                     limit);
188 189 190 191 192 193 194 195 196
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
197 198
REGISTER_OP_CUDA_KERNEL(c_embedding,
                        ops::CEmbeddingCUDAKernel<float>,
199 200
                        ops::CEmbeddingCUDAKernel<double>,
                        ops::CEmbeddingCUDAKernel<plat::float16>);
201 202
REGISTER_OP_CUDA_KERNEL(c_embedding_grad,
                        ops::CEmbeddingGradCUDAKernel<float>,
203 204
                        ops::CEmbeddingGradCUDAKernel<double>,
                        ops::CEmbeddingGradCUDAKernel<plat::float16>);