compare_kernel.cu 5.8 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
F
From00 已提交
17 18
#include "paddle/phi/kernels/impl/compare_kernel_impl.h"

19 20 21
#ifdef PADDLE_WITH_XPU_KP
#include "paddle/phi/backends/xpu/xpu_context.h"
#else
F
From00 已提交
22
#include <thrust/fill.h>
23

F
From00 已提交
24
#include <vector>
25

F
From00 已提交
26
#include "paddle/phi/core/dense_tensor.h"
27
#include "paddle/phi/kernels/compare_kernel.h"
F
From00 已提交
28 29 30
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
31
#endif
F
From00 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

namespace phi {

template <typename T>
struct BitwiseAdd {
  // Bitwise add operator, returns <tt>a + b</tt>
  inline T initial() { return static_cast<T>(true); }

  __host__ __device__ __forceinline__ T operator()(const T& a,
                                                   const T& b) const {
    return a & b;
  }
};

template <typename T,
          typename Context,
          typename Functor,
          typename InverseFunctor>
inline void CompareKernelImpl(const Context& ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              int axis,
                              DenseTensor* out) {
  ctx.template Alloc<bool>(out);
  std::vector<const DenseTensor*> ins{&x, &y};
  std::vector<DenseTensor*> outs{out};
  funcs::BroadcastKernel<ElementwiseType::kBinary, T, bool>(
      ctx, ins, &outs, axis, Functor());
}

62
#ifndef PADDLE_WITH_XPU_KP
F
From00 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
template <typename T, typename Context, typename Functor>
inline void CompareAllKernelImpl(const Context& ctx,
                                 const DenseTensor& x,
                                 const DenseTensor& y,
                                 DenseTensor* out) {
  bool* out_data = ctx.template Alloc<bool>(out);

  if (x.dims() != y.dims()) {
    thrust::device_ptr<bool> out_dev_ptr(out_data);
    thrust::fill(out_dev_ptr, out_dev_ptr + 1, false);
    return;
  }

  DenseTensor tmp;
  tmp.Resize(x.dims());
  ctx.template Alloc<bool>(&tmp);

  std::vector<const DenseTensor*> ins{&x, &y};
  std::vector<DenseTensor*> outs{&tmp};
  funcs::ElementwiseKernel<bool>(ctx, ins, &outs, Functor());

  // Reduce by 'bitwise and' operator
  std::vector<int> reduce_dims;
  reduce_dims.resize(tmp.dims().size());
  for (int i = 0; i < reduce_dims.size(); ++i) {
    reduce_dims[i] = i;
  }
90 91
  funcs::ReduceKernel<bool, bool, BitwiseAdd, kps::IdentityFunctor<bool>>(
      ctx, tmp, out, kps::IdentityFunctor<bool>(), reduce_dims);
F
From00 已提交
92
}
93
#endif
F
From00 已提交
94 95 96

}  // namespace phi

97 98 99 100 101 102 103 104 105 106
#ifdef PADDLE_WITH_XPU_KP
PD_REGISTER_KERNEL(less_than, KPS, ALL_LAYOUT, phi::LessThanKernel, int) {}
PD_REGISTER_KERNEL(less_equal, KPS, ALL_LAYOUT, phi::LessEqualKernel, int) {}
PD_REGISTER_KERNEL(greater_than, KPS, ALL_LAYOUT, phi::GreaterThanKernel, int) {
}
PD_REGISTER_KERNEL(
    greater_equal, KPS, ALL_LAYOUT, phi::GreaterEqualKernel, int) {}
PD_REGISTER_KERNEL(equal, KPS, ALL_LAYOUT, phi::EqualKernel, int) {}
PD_REGISTER_KERNEL(not_equal, KPS, ALL_LAYOUT, phi::NotEqualKernel, int) {}
#else
F
From00 已提交
107
PD_REGISTER_KERNEL(less_than,
108
                   KPS,
F
From00 已提交
109 110 111 112 113 114 115
                   ALL_LAYOUT,
                   phi::LessThanKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
116 117
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
118
PD_REGISTER_KERNEL(less_equal,
119
                   KPS,
F
From00 已提交
120 121 122 123 124 125 126
                   ALL_LAYOUT,
                   phi::LessEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
127 128
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
129
PD_REGISTER_KERNEL(greater_than,
130
                   KPS,
F
From00 已提交
131 132 133 134 135 136 137
                   ALL_LAYOUT,
                   phi::GreaterThanKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
138 139
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
140
PD_REGISTER_KERNEL(greater_equal,
141
                   KPS,
F
From00 已提交
142 143 144 145 146 147 148
                   ALL_LAYOUT,
                   phi::GreaterEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
149 150
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
151
PD_REGISTER_KERNEL(equal,
152
                   KPS,
F
From00 已提交
153 154 155 156 157 158 159
                   ALL_LAYOUT,
                   phi::EqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
160 161
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
162
PD_REGISTER_KERNEL(not_equal,
163
                   KPS,
F
From00 已提交
164 165 166 167 168 169 170
                   ALL_LAYOUT,
                   phi::NotEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
171 172
                   double,
                   phi::dtype::float16) {}
F
From00 已提交
173 174

PD_REGISTER_KERNEL(equal_all,
175
                   KPS,
F
From00 已提交
176 177 178 179 180 181 182
                   ALL_LAYOUT,
                   phi::EqualAllKernel,
                   bool,
                   int,
                   int64_t,
                   float,
                   double) {}
183
#endif