compare_kernel.cu 5.5 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
F
From00 已提交
17 18
#include "paddle/phi/kernels/impl/compare_kernel_impl.h"

19 20 21
#ifdef PADDLE_WITH_XPU_KP
#include "paddle/phi/backends/xpu/xpu_context.h"
#else
F
From00 已提交
22 23 24
#include <thrust/fill.h>
#include <vector>
#include "paddle/phi/core/dense_tensor.h"
25
#include "paddle/phi/kernels/compare_kernel.h"
F
From00 已提交
26 27 28
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
29
#endif
F
From00 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

namespace phi {

template <typename T>
struct BitwiseAdd {
  // Bitwise add operator, returns <tt>a + b</tt>
  inline T initial() { return static_cast<T>(true); }

  __host__ __device__ __forceinline__ T operator()(const T& a,
                                                   const T& b) const {
    return a & b;
  }
};

template <typename T,
          typename Context,
          typename Functor,
          typename InverseFunctor>
inline void CompareKernelImpl(const Context& ctx,
                              const DenseTensor& x,
                              const DenseTensor& y,
                              int axis,
                              DenseTensor* out) {
  ctx.template Alloc<bool>(out);
  std::vector<const DenseTensor*> ins{&x, &y};
  std::vector<DenseTensor*> outs{out};
  funcs::BroadcastKernel<ElementwiseType::kBinary, T, bool>(
      ctx, ins, &outs, axis, Functor());
}

60
#ifndef PADDLE_WITH_XPU_KP
F
From00 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
template <typename T, typename Context, typename Functor>
inline void CompareAllKernelImpl(const Context& ctx,
                                 const DenseTensor& x,
                                 const DenseTensor& y,
                                 DenseTensor* out) {
  bool* out_data = ctx.template Alloc<bool>(out);

  if (x.dims() != y.dims()) {
    thrust::device_ptr<bool> out_dev_ptr(out_data);
    thrust::fill(out_dev_ptr, out_dev_ptr + 1, false);
    return;
  }

  DenseTensor tmp;
  tmp.Resize(x.dims());
  ctx.template Alloc<bool>(&tmp);

  std::vector<const DenseTensor*> ins{&x, &y};
  std::vector<DenseTensor*> outs{&tmp};
  funcs::ElementwiseKernel<bool>(ctx, ins, &outs, Functor());

  // Reduce by 'bitwise and' operator
  std::vector<int> reduce_dims;
  reduce_dims.resize(tmp.dims().size());
  for (int i = 0; i < reduce_dims.size(); ++i) {
    reduce_dims[i] = i;
  }
88 89
  funcs::ReduceKernel<bool, bool, BitwiseAdd, kps::IdentityFunctor<bool>>(
      ctx, tmp, out, kps::IdentityFunctor<bool>(), reduce_dims);
F
From00 已提交
90
}
91
#endif
F
From00 已提交
92 93 94

}  // namespace phi

95 96 97 98 99 100 101 102 103 104
#ifdef PADDLE_WITH_XPU_KP
PD_REGISTER_KERNEL(less_than, KPS, ALL_LAYOUT, phi::LessThanKernel, int) {}
PD_REGISTER_KERNEL(less_equal, KPS, ALL_LAYOUT, phi::LessEqualKernel, int) {}
PD_REGISTER_KERNEL(greater_than, KPS, ALL_LAYOUT, phi::GreaterThanKernel, int) {
}
PD_REGISTER_KERNEL(
    greater_equal, KPS, ALL_LAYOUT, phi::GreaterEqualKernel, int) {}
PD_REGISTER_KERNEL(equal, KPS, ALL_LAYOUT, phi::EqualKernel, int) {}
PD_REGISTER_KERNEL(not_equal, KPS, ALL_LAYOUT, phi::NotEqualKernel, int) {}
#else
F
From00 已提交
105
PD_REGISTER_KERNEL(less_than,
106
                   KPS,
F
From00 已提交
107 108 109 110 111 112 113 114 115
                   ALL_LAYOUT,
                   phi::LessThanKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}
PD_REGISTER_KERNEL(less_equal,
116
                   KPS,
F
From00 已提交
117 118 119 120 121 122 123 124 125
                   ALL_LAYOUT,
                   phi::LessEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}
PD_REGISTER_KERNEL(greater_than,
126
                   KPS,
F
From00 已提交
127 128 129 130 131 132 133 134 135
                   ALL_LAYOUT,
                   phi::GreaterThanKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}
PD_REGISTER_KERNEL(greater_equal,
136
                   KPS,
F
From00 已提交
137 138 139 140 141 142 143 144 145
                   ALL_LAYOUT,
                   phi::GreaterEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}
PD_REGISTER_KERNEL(equal,
146
                   KPS,
F
From00 已提交
147 148 149 150 151 152 153 154 155
                   ALL_LAYOUT,
                   phi::EqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}
PD_REGISTER_KERNEL(not_equal,
156
                   KPS,
F
From00 已提交
157 158 159 160 161 162 163 164 165 166
                   ALL_LAYOUT,
                   phi::NotEqualKernel,
                   bool,
                   int16_t,
                   int,
                   int64_t,
                   float,
                   double) {}

PD_REGISTER_KERNEL(equal_all,
167
                   KPS,
F
From00 已提交
168 169 170 171 172 173 174
                   ALL_LAYOUT,
                   phi::EqualAllKernel,
                   bool,
                   int,
                   int64_t,
                   float,
                   double) {}
175
#endif