expand_grad_kernel.cc 1.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/expand_grad_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void ExpandGradKernel(const Context& ctx,
                      const DenseTensor& x,
                      const DenseTensor& out_grad,
                      const IntArray& shape,
                      DenseTensor* in_grad) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  auto in_grad_data = ctx.template Alloc<T>(in_grad);
  auto out_grad_dims = phi::vectorize<int64_t>(out_grad.dims());
  auto in_grad_dims = phi::vectorize<int64_t>(in_grad->dims());
  in_grad_dims.insert(
      in_grad_dims.begin(), out_grad.dims().size() - in_grad->dims().size(), 1);

  int r = xpu::expand_grad<XPUType>(
      ctx.x_context(),
      reinterpret_cast<const XPUType*>(out_grad.data<T>()),
      reinterpret_cast<XPUType*>(in_grad_data),
      out_grad_dims,
      in_grad_dims);
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "expand_grad");
}

}  // namespace phi

PD_REGISTER_KERNEL(expand_grad, XPU, ALL_LAYOUT, phi::ExpandGradKernel, float) {
}