// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/expand_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void ExpandGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& out_grad, const IntArray& shape, DenseTensor* in_grad) { using XPUType = typename XPUTypeTrait::Type; auto in_grad_data = ctx.template Alloc(in_grad); auto out_grad_dims = phi::vectorize(out_grad.dims()); auto in_grad_dims = phi::vectorize(in_grad->dims()); in_grad_dims.insert( in_grad_dims.begin(), out_grad.dims().size() - in_grad->dims().size(), 1); int r = xpu::expand_grad( ctx.x_context(), reinterpret_cast(out_grad.data()), reinterpret_cast(in_grad_data), out_grad_dims, in_grad_dims); PADDLE_ENFORCE_XDNN_SUCCESS(r, "expand_grad"); } } // namespace phi PD_REGISTER_KERNEL(expand_grad, XPU, ALL_LAYOUT, phi::ExpandGradKernel, float) { }