teacher_student_sigmoid_loss_op.cc 9.7 KB
Newer Older
H
add API  
heqiaozhi 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
H
heqiaozhi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/teacher_student_sigmoid_loss_op.h"
H
Huihuang Zheng 已提交
16 17 18

#include <memory>

19
#include "paddle/phi/kernels/funcs/math_function.h"
H
heqiaozhi 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class TeacherStudentSigmoidLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
29 30 31 32 33
    OP_INOUT_CHECK(
        ctx->HasInput("X"), "Input", "X", "teacher_student_sigmoid_loss");
    OP_INOUT_CHECK(ctx->HasInput("Label"),
                   "Input",
                   "Label",
34
                   "teacher_student_sigmoid_loss");
35 36
    OP_INOUT_CHECK(
        ctx->HasOutput("Y"), "Output", "Y", "teacher_student_sigmoid_loss");
H
heqiaozhi 已提交
37 38 39

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
40 41
    PADDLE_ENFORCE_EQ(x_dims.size(),
                      2UL,
42 43 44 45
                      platform::errors::InvalidArgument(
                          "Input(X)'s rank should be 2. But received: "
                          "Input(X)'s rank is [%d]",
                          x_dims.size()));
46 47
    PADDLE_ENFORCE_EQ(label_dims.size(),
                      2UL,
48 49 50 51
                      platform::errors::InvalidArgument(
                          "Input(Label)'s rank should be 2. But "
                          "received Input(Label)'s rank is [%d]",
                          label_dims.size()));
H
heqiaozhi 已提交
52
    if (ctx->IsRuntime()) {
53
      PADDLE_ENFORCE_EQ(
54 55
          x_dims[0],
          label_dims[0],
56 57
          platform::errors::InvalidArgument(
              "The 1st dimension of Input(X) and Input(Label) should "
58
              "be equal. The difference is [%d]: [%d]",
59 60 61 62
              x_dims[0],
              label_dims[0]));
      PADDLE_ENFORCE_EQ(label_dims[1],
                        1UL,
63 64 65 66 67
                        platform::errors::InvalidArgument(
                            "The 2nd dimension of "
                            "Input(Label) should be 1. But received "
                            "Input(Label)'s 2nd dim is [%d]",
                            label_dims[1]));
H
heqiaozhi 已提交
68
    }
H
heqiaozhi 已提交
69 70 71 72 73 74 75 76 77 78
    ctx->SetOutputDim("Y", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
79 80 81
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
H
heqiaozhi 已提交
82 83 84
  }
};

H
hong 已提交
85 86 87
template <typename T>
class TeacherStudentSigmoidLossGradOpMaker
    : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
88
 public:
H
hong 已提交
89
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
90 91

 protected:
92
  void Apply(GradOpPtr<T> op) const override {
H
Huihuang Zheng 已提交
93 94
    op->SetType("teacher_student_sigmoid_loss_grad");

H
hong 已提交
95 96 97
    op->SetInput("X", this->Input("X"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
H
Huihuang Zheng 已提交
98

H
hong 已提交
99
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
H
Huihuang Zheng 已提交
100

H
hong 已提交
101
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
102 103 104
  }
};

H
heqiaozhi 已提交
105 106 107 108 109 110
class TeacherStudentSigmoidLossGradientOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
111 112 113 114 115 116 117 118 119
    OP_INOUT_CHECK(
        ctx->HasInput("X"), "Input", "X", "teacher_student_sigmoid_loss_grad");
    OP_INOUT_CHECK(ctx->HasInput("Label"),
                   "Input",
                   "X",
                   "teacher_student_sigmoid_loss_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")),
                   "Input",
                   "Y@Grad",
120
                   "teacher_student_sigmoid_loss_grad");
121 122 123
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")),
                   "Input",
                   "X@Grad",
124
                   "teacher_student_sigmoid_loss_grad");
H
heqiaozhi 已提交
125 126 127 128

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
129
    PADDLE_ENFORCE_EQ(
130 131
        x_dims.size(),
        2,
132 133 134
        platform::errors::InvalidArgument(
            "Input(X)'s rank should be 2. But received Input(X)'s rank is [%d]",
            x_dims.size()));
135 136
    PADDLE_ENFORCE_EQ(dy_dims.size(),
                      2,
137 138 139 140
                      platform::errors::InvalidArgument(
                          "Input(Y@Grad)'s rank should be 2. But received "
                          "Input(Y@Grad)'s rank is [%d]",
                          dy_dims.size()));
141 142
    PADDLE_ENFORCE_EQ(label_dims.size(),
                      2,
143 144 145 146
                      platform::errors::InvalidArgument(
                          "Input(Label)'s rank should be 2. But received "
                          "Input(Y@Grad)'s rank is [%d]",
                          label_dims.size()));
H
heqiaozhi 已提交
147
    if (ctx->IsRuntime()) {
148
      PADDLE_ENFORCE_EQ(
149 150
          x_dims[0],
          label_dims[0],
151 152
          platform::errors::InvalidArgument(
              "The 1st dimension of Input(X) and Input(Label) should "
153
              "be equal. The difference is [%d]: [%d]",
154 155
              x_dims[0],
              label_dims[0]));
H
heqiaozhi 已提交
156
      PADDLE_ENFORCE_EQ(
157 158
          x_dims[0],
          dy_dims[0],
159 160
          platform::errors::InvalidArgument(
              "The 1st dimension of Input(X) and Input(Y@Grad) should "
161
              "be equal. The difference is [%d]: [%d]",
162 163
              x_dims[0],
              dy_dims[0]));
164
      PADDLE_ENFORCE_EQ(
165 166
          dy_dims[1],
          1,
167 168 169 170
          platform::errors::InvalidArgument(
              "The 2nd dimension of Input(Y@Grad) should be 1. "
              "But received Input(Y@Grad)'s 2nd dimension is [%d]",
              dy_dims[1]));
171
      PADDLE_ENFORCE_EQ(
172 173
          label_dims[1],
          1,
174 175
          platform::errors::InvalidArgument(
              "When Attr(soft_label) == false, the 2nd dimension of "
176 177
              "Input(Label) should be 1. But received Input(Label)'s 2nd "
              "dimemsion "
178 179
              "is [%d]",
              label_dims[1]));
H
heqiaozhi 已提交
180
    }
H
heqiaozhi 已提交
181 182 183 184 185 186 187 188 189 190
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
191 192 193
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
H
heqiaozhi 已提交
194 195 196 197 198 199 200 201
  }
};

class TeacherStudentSigmoidLossOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
202 203
             "(phi::DenseTensor, default phi::DenseTensor<float>), a 2-D "
             "tensor with shape [N x 1],"
H
heqiaozhi 已提交
204 205 206 207
             " where N is the batch size and D is the output. "
             "This input is a probability computed by the previous operator, "
             "which is almost always the result of a softmax operator.");
    AddInput("Label",
208 209
             "(phi::DenseTensor), the ground truth which is a 2-D tensor. "
             "Label is a phi::DenseTensor<float> with shape [N x 1]. ");
H
heqiaozhi 已提交
210
    AddOutput("Y",
211 212
              "(phi::DenseTensor, default phi::DenseTensor<float>), a 2-D "
              "tensor with shape "
H
heqiaozhi 已提交
213
              "[N x 1]. The teacher student sigmoid loss.");
214 215
    AddAttr<float>(
        "soft_max_up_bound",
H
heqiaozhi 已提交
216
        "fp32, if input > soft_max_up_bound, input will be bound, default 15.0")
217
        .SetDefault(15.0);
H
heqiaozhi 已提交
218 219 220
    AddAttr<float>("soft_max_lower_bound",
                   "fp32, if input < soft_max_lower_bound, input will be "
                   "bound, default -15.0")
H
heqiaozhi 已提交
221 222 223 224 225 226 227 228
        .SetDefault(-15.0);
    AddComment(R"DOC(
TeacherStudentSigmoidLoss Operator.

It's similarity to SigmoidCrossEntropyWithLogits Operator. The difference is that
we add another label(z') to original.
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))
        z is click or not
229
        z' is teacher value
H
heqiaozhi 已提交
230 231 232
        label = {-2, -1, [0, 2]}
        when z' is not exist, clk = 0 : label = -2;
        when z' is not exist, clk = 1 : label = -1;
H
heqiaozhi 已提交
233
        when z' is exist , clk = 0 : label = 0 + z';
H
heqiaozhi 已提交
234 235 236 237 238 239 240 241 242 243
        when z' is exist    , clk = 1 : label = 1 + z';

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
244
REGISTER_OPERATOR(
245 246
    teacher_student_sigmoid_loss,
    ops::TeacherStudentSigmoidLossOp,
H
hong 已提交
247 248 249
    ops::TeacherStudentSigmoidLossOpMaker,
    ops::TeacherStudentSigmoidLossGradOpMaker<paddle::framework::OpDesc>,
    ops::TeacherStudentSigmoidLossGradOpMaker<paddle::imperative::OpBase>);
H
heqiaozhi 已提交
250 251 252 253 254 255 256 257 258 259 260

REGISTER_OPERATOR(teacher_student_sigmoid_loss_grad,
                  ops::TeacherStudentSigmoidLossGradientOp);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss,
                       ops::TeacherStudentSigmoidLossOpKernel<float>,
                       ops::TeacherStudentSigmoidLossOpKernel<double>);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss_grad,
                       ops::TeacherStudentSigmoidLossGradOpKernel<float>,
                       ops::TeacherStudentSigmoidLossGradOpKernel<double>);