teacher_student_sigmoid_loss_op.cc 9.7 KB
Newer Older
H
add API  
heqiaozhi 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
H
heqiaozhi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/teacher_student_sigmoid_loss_op.h"
H
Huihuang Zheng 已提交
16 17 18

#include <memory>

19
#include "paddle/phi/kernels/funcs/math_function.h"
H
heqiaozhi 已提交
20 21 22 23

namespace paddle {
namespace operators {

24
using Tensor = phi::DenseTensor;
H
heqiaozhi 已提交
25 26 27 28 29 30

class TeacherStudentSigmoidLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
31 32 33 34 35
    OP_INOUT_CHECK(
        ctx->HasInput("X"), "Input", "X", "teacher_student_sigmoid_loss");
    OP_INOUT_CHECK(ctx->HasInput("Label"),
                   "Input",
                   "Label",
36
                   "teacher_student_sigmoid_loss");
37 38
    OP_INOUT_CHECK(
        ctx->HasOutput("Y"), "Output", "Y", "teacher_student_sigmoid_loss");
H
heqiaozhi 已提交
39 40 41

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
42 43
    PADDLE_ENFORCE_EQ(x_dims.size(),
                      2UL,
44 45 46 47
                      platform::errors::InvalidArgument(
                          "Input(X)'s rank should be 2. But received: "
                          "Input(X)'s rank is [%d]",
                          x_dims.size()));
48 49
    PADDLE_ENFORCE_EQ(label_dims.size(),
                      2UL,
50 51 52 53
                      platform::errors::InvalidArgument(
                          "Input(Label)'s rank should be 2. But "
                          "received Input(Label)'s rank is [%d]",
                          label_dims.size()));
H
heqiaozhi 已提交
54
    if (ctx->IsRuntime()) {
55
      PADDLE_ENFORCE_EQ(
56 57
          x_dims[0],
          label_dims[0],
58 59
          platform::errors::InvalidArgument(
              "The 1st dimension of Input(X) and Input(Label) should "
60
              "be equal. The difference is [%d]: [%d]",
61 62 63 64
              x_dims[0],
              label_dims[0]));
      PADDLE_ENFORCE_EQ(label_dims[1],
                        1UL,
65 66 67 68 69
                        platform::errors::InvalidArgument(
                            "The 2nd dimension of "
                            "Input(Label) should be 1. But received "
                            "Input(Label)'s 2nd dim is [%d]",
                            label_dims[1]));
H
heqiaozhi 已提交
70
    }
H
heqiaozhi 已提交
71 72 73 74 75 76 77 78 79 80
    ctx->SetOutputDim("Y", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
81 82 83
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
H
heqiaozhi 已提交
84 85 86
  }
};

H
hong 已提交
87 88 89
template <typename T>
class TeacherStudentSigmoidLossGradOpMaker
    : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
90
 public:
H
hong 已提交
91
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
92 93

 protected:
94
  void Apply(GradOpPtr<T> op) const override {
H
Huihuang Zheng 已提交
95 96
    op->SetType("teacher_student_sigmoid_loss_grad");

H
hong 已提交
97 98 99
    op->SetInput("X", this->Input("X"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
H
Huihuang Zheng 已提交
100

H
hong 已提交
101
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
H
Huihuang Zheng 已提交
102

H
hong 已提交
103
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
104 105 106
  }
};

H
heqiaozhi 已提交
107 108 109 110 111 112
class TeacherStudentSigmoidLossGradientOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
113 114 115 116 117 118 119 120 121
    OP_INOUT_CHECK(
        ctx->HasInput("X"), "Input", "X", "teacher_student_sigmoid_loss_grad");
    OP_INOUT_CHECK(ctx->HasInput("Label"),
                   "Input",
                   "X",
                   "teacher_student_sigmoid_loss_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")),
                   "Input",
                   "Y@Grad",
122
                   "teacher_student_sigmoid_loss_grad");
123 124 125
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")),
                   "Input",
                   "X@Grad",
126
                   "teacher_student_sigmoid_loss_grad");
H
heqiaozhi 已提交
127 128 129 130

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
131
    PADDLE_ENFORCE_EQ(
132 133
        x_dims.size(),
        2,
134 135 136
        platform::errors::InvalidArgument(
            "Input(X)'s rank should be 2. But received Input(X)'s rank is [%d]",
            x_dims.size()));
137 138
    PADDLE_ENFORCE_EQ(dy_dims.size(),
                      2,
139 140 141 142
                      platform::errors::InvalidArgument(
                          "Input(Y@Grad)'s rank should be 2. But received "
                          "Input(Y@Grad)'s rank is [%d]",
                          dy_dims.size()));
143 144
    PADDLE_ENFORCE_EQ(label_dims.size(),
                      2,
145 146 147 148
                      platform::errors::InvalidArgument(
                          "Input(Label)'s rank should be 2. But received "
                          "Input(Y@Grad)'s rank is [%d]",
                          label_dims.size()));
H
heqiaozhi 已提交
149
    if (ctx->IsRuntime()) {
150
      PADDLE_ENFORCE_EQ(
151 152
          x_dims[0],
          label_dims[0],
153 154
          platform::errors::InvalidArgument(
              "The 1st dimension of Input(X) and Input(Label) should "
155
              "be equal. The difference is [%d]: [%d]",
156 157
              x_dims[0],
              label_dims[0]));
H
heqiaozhi 已提交
158
      PADDLE_ENFORCE_EQ(
159 160
          x_dims[0],
          dy_dims[0],
161 162
          platform::errors::InvalidArgument(
              "The 1st dimension of Input(X) and Input(Y@Grad) should "
163
              "be equal. The difference is [%d]: [%d]",
164 165
              x_dims[0],
              dy_dims[0]));
166
      PADDLE_ENFORCE_EQ(
167 168
          dy_dims[1],
          1,
169 170 171 172
          platform::errors::InvalidArgument(
              "The 2nd dimension of Input(Y@Grad) should be 1. "
              "But received Input(Y@Grad)'s 2nd dimension is [%d]",
              dy_dims[1]));
173
      PADDLE_ENFORCE_EQ(
174 175
          label_dims[1],
          1,
176 177
          platform::errors::InvalidArgument(
              "When Attr(soft_label) == false, the 2nd dimension of "
178 179
              "Input(Label) should be 1. But received Input(Label)'s 2nd "
              "dimemsion "
180 181
              "is [%d]",
              label_dims[1]));
H
heqiaozhi 已提交
182
    }
H
heqiaozhi 已提交
183 184 185 186 187 188 189 190 191 192
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
193 194 195
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
H
heqiaozhi 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  }
};

class TeacherStudentSigmoidLossOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape [N x 1],"
             " where N is the batch size and D is the output. "
             "This input is a probability computed by the previous operator, "
             "which is almost always the result of a softmax operator.");
    AddInput("Label",
             "(Tensor), the ground truth which is a 2-D tensor. "
             "Label is a Tensor<float> with shape [N x 1]. ");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a 2-D tensor with shape "
              "[N x 1]. The teacher student sigmoid loss.");
214 215
    AddAttr<float>(
        "soft_max_up_bound",
H
heqiaozhi 已提交
216
        "fp32, if input > soft_max_up_bound, input will be bound, default 15.0")
217
        .SetDefault(15.0);
H
heqiaozhi 已提交
218 219 220
    AddAttr<float>("soft_max_lower_bound",
                   "fp32, if input < soft_max_lower_bound, input will be "
                   "bound, default -15.0")
H
heqiaozhi 已提交
221 222 223 224 225 226 227 228
        .SetDefault(-15.0);
    AddComment(R"DOC(
TeacherStudentSigmoidLoss Operator.

It's similarity to SigmoidCrossEntropyWithLogits Operator. The difference is that
we add another label(z') to original.
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))
        z is click or not
229
        z' is teacher value
H
heqiaozhi 已提交
230 231 232
        label = {-2, -1, [0, 2]}
        when z' is not exist, clk = 0 : label = -2;
        when z' is not exist, clk = 1 : label = -1;
H
heqiaozhi 已提交
233
        when z' is exist , clk = 0 : label = 0 + z';
H
heqiaozhi 已提交
234 235 236 237 238 239 240 241 242 243
        when z' is exist    , clk = 1 : label = 1 + z';

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
244
REGISTER_OPERATOR(
245 246
    teacher_student_sigmoid_loss,
    ops::TeacherStudentSigmoidLossOp,
H
hong 已提交
247 248 249
    ops::TeacherStudentSigmoidLossOpMaker,
    ops::TeacherStudentSigmoidLossGradOpMaker<paddle::framework::OpDesc>,
    ops::TeacherStudentSigmoidLossGradOpMaker<paddle::imperative::OpBase>);
H
heqiaozhi 已提交
250 251 252 253 254 255 256 257 258 259 260

REGISTER_OPERATOR(teacher_student_sigmoid_loss_grad,
                  ops::TeacherStudentSigmoidLossGradientOp);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss,
                       ops::TeacherStudentSigmoidLossOpKernel<float>,
                       ops::TeacherStudentSigmoidLossOpKernel<double>);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss_grad,
                       ops::TeacherStudentSigmoidLossGradOpKernel<float>,
                       ops::TeacherStudentSigmoidLossGradOpKernel<double>);