hash_op.cc 2.5 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
minqiyang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/hash_op.h"
#include <string>

namespace paddle {
namespace operators {

class HashOp : public framework::OperatorWithKernel {
 public:
  HashOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of HashOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of HashOp should not be null.");

    auto dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE_EQ(dims.size(), 2UL,
                      "The input of hash_op's dimensions must be 2");
    std::vector<int64_t> out_dims;
    int num_hash = ctx->Attrs().Get<int>("num_hash");
39
    HashOutputSize(dims, out_dims, num_hash);
M
minqiyang 已提交
40

M
minqiyang 已提交
41
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
M
minqiyang 已提交
42 43 44 45 46 47 48
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class HashOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
49 50
    AddInput("X", "(Tensor) Input tensor of hash operator.");
    AddOutput("Out", "(Tensor) Output tensor of hash operator.");
M
minqiyang 已提交
51
    AddComment(R"DOC(
52
        Execute `num_hash` times xxHash algorithm on all elements on second dimension of input. 
M
minqiyang 已提交
53 54 55
)DOC");
    AddAttr<int>("num_hash", "").SetDefault(1);
    AddAttr<int>("mod_by", "").SetDefault(100000);
L
luotao1 已提交
56 57
    AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
                  "Skip calling InferShape() function in the runtime.")
58
        .SetDefault(true);
M
minqiyang 已提交
59 60 61 62 63 64 65 66 67
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_WITHOUT_GRADIENT(hash, ops::HashOp, ops::HashOpMaker);
68
REGISTER_OP_CPU_KERNEL(hash, ops::HashKernel<int>, ops::HashKernel<int64_t>);