test_inplace.py 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle
import paddle.fluid.core as core
22
from paddle.fluid.framework import _test_eager_guard, in_dygraph_mode
23 24 25


class TestInplace(unittest.TestCase):
26
    def func_test_forward_version(self):
27 28 29 30 31 32 33
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32))
            self.assertEqual(var.inplace_version, 0)

            var[0] = 1.1
            self.assertEqual(var.inplace_version, 1)

34 35 36 37 38
            # TODO1: assign don't support inplace in temporary
            if in_dygraph_mode():
                var[0] = 2
            else:
                paddle.assign(paddle.ones(shape=[3]), var)
39 40 41 42 43 44 45 46

            # NOTE(liym27): assign(input, output) is an inplace operation for output.
            # There is inplace-related processing for api assign, var.inplace_version should be 2 not 1.
            self.assertEqual(var.inplace_version, 2)

            var[2] = 3
            self.assertEqual(var.inplace_version, 3)

47 48 49 50 51 52
    def test_forward_version(self):
        with _test_eager_guard():
            self.func_test_forward_version()
        self.func_test_forward_version()

    def func_test_backward_error(self):
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            var_b[1:2] = 3.3  # var_b is modified inplace after using it

            var_d = var_b**2

            loss = paddle.nn.functional.relu(var_c + var_d)
68 69 70 71 72 73 74 75 76 77 78 79
            if in_dygraph_mode():
                with self.assertRaisesRegexp(
                        RuntimeError,
                        "received current_inplace_version:{} != inplace_version_snapshot_:{}".
                        format(1, 0)):
                    loss.backward()
            else:
                with self.assertRaisesRegexp(
                        RuntimeError,
                        "received tensor_version:{} != wrapper_version_snapshot:{}".
                        format(1, 0)):
                    loss.backward()
80

81 82 83 84 85 86
    def test_backward_error(self):
        with _test_eager_guard():
            self.func_test_backward_error()
        self.func_test_backward_error()

    def func_test_backward_success_1(self):
87 88 89 90 91 92 93 94 95 96 97 98 99 100
        # var_b is modified inplace before using it, the inplace operator doesn't result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2
            var_b[1:2] = 3  # var_b is modified inplace before using it

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            loss = var_c.sum()
            loss.backward()

101 102 103 104 105 106
    def test_backward_success_1(self):
        with _test_eager_guard():
            self.func_test_backward_success_1()
        self.func_test_backward_success_1()

    def func_test_backward_success_2(self):
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        # Although var_b is modified inplace after using it, it does not used in gradient computation.
        # The inplace operator doesn't result in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            var_b[1:2] = 3  # var_b is modified inplace before using it

            var_c = var_b + var_b  # Here, the grad op of sum doesn't use the value of var_b
            loss = var_c.sum()

            var_b[1:2] = 3  # var_b is modified inplace after using it

            loss.backward()

124 125 126 127 128 129
    def test_backward_success_2(self):
        # TODO2: need to process no_need_buffer in eager mode
        # with _test_eager_guard():
        #     self.func_test_backward_success_2()
        self.func_test_backward_success_2()

130

131 132 133
class TestDygraphInplace(unittest.TestCase):
    def setUp(self):
        self.init_data()
134
        self.set_np_compare_func()
135 136

    def init_data(self):
137
        self.input_var_numpy = np.random.uniform(-5, 5, [10, 20, 1])
138 139
        self.dtype = "float32"

140 141 142
    def set_np_compare_func(self):
        self.np_compare = np.array_equal

143 144 145 146 147 148
    def non_inplace_api_processing(self, var):
        return paddle.squeeze(var)

    def inplace_api_processing(self, var):
        return paddle.squeeze_(var)

149
    def func_test_inplace_api(self):
150 151 152 153 154 155 156
        var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
        inplace_var = self.inplace_api_processing(var)
        self.assertTrue(id(var) == id(inplace_var))

        inplace_var[0] = 2.
        self.assertTrue(np.array_equal(var.numpy(), inplace_var.numpy()))

157 158 159 160 161 162
    def test_inplace_api(self):
        with _test_eager_guard():
            self.func_test_inplace_api()
        self.func_test_inplace_api()

    def func_test_forward_version(self):
163 164 165 166 167 168 169 170 171 172 173 174 175
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            self.assertEqual(var.inplace_version, 0)

            inplace_var = self.inplace_api_processing(var)
            self.assertEqual(var.inplace_version, 1)

            inplace_var[0] = 2.
            self.assertEqual(var.inplace_version, 2)

            inplace_var = self.inplace_api_processing(inplace_var)
            self.assertEqual(var.inplace_version, 3)

176 177 178 179 180 181
    def test_forward_version(self):
        with _test_eager_guard():
            self.func_test_forward_version()
        self.func_test_forward_version()

    def func_test_leaf_inplace_var_error(self):
182 183 184 185 186 187 188 189 190
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var.stop_gradient = False

            def leaf_inplace_error():
                self.inplace_api_processing(var)

            self.assertRaises(ValueError, leaf_inplace_error)

191 192 193 194 195 196
    def test_leaf_inplace_var_error(self):
        with _test_eager_guard():
            self.func_test_leaf_inplace_var_error()
        self.func_test_leaf_inplace_var_error()

    def func_test_backward_error(self):
197 198 199 200 201 202 203 204 205 206 207 208 209
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            self.inplace_api_processing(var_b)

            loss = paddle.nn.functional.relu(var_c)
210 211 212 213 214 215 216 217 218 219 220 221
            if in_dygraph_mode():
                with self.assertRaisesRegexp(
                        RuntimeError,
                        "received current_inplace_version:{} != inplace_version_snapshot_:{}".
                        format(1, 0)):
                    loss.backward()
            else:
                with self.assertRaisesRegexp(
                        RuntimeError,
                        "received tensor_version:{} != wrapper_version_snapshot:{}".
                        format(1, 0)):
                    loss.backward()
222

223 224 225 226 227 228
    def test_backward_error(self):
        with _test_eager_guard():
            self.func_test_backward_error()
        self.func_test_backward_error()

    def func_test_backward_success_1(self):
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        # var_b is modified inplace before using it, the inplace operator doesn't result
        # in incorrect gradient computation.
        grad_var_a, grad_var_a_inplace = 0, 1
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2
            var_c = self.inplace_api_processing(
                var_b)  # var_b is modified inplace before using it

            # Here, the gradient computation will use the value of var_b
            var_d = var_c**2
            loss = var_d.sum()
            loss.backward()
244
            grad_var_a_inplace = var_a.grad.numpy()
245 246 247 248 249 250 251 252 253 254

        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2
            var_c = self.non_inplace_api_processing(var_b)
            var_d = var_c**2
            loss = var_d.sum()
            loss.backward()
255
            grad_var_a = var_a.grad.numpy()
256

257
        self.assertTrue(self.np_compare(grad_var_a_inplace, grad_var_a))
258

259 260 261 262 263 264
    def test_backward_success_1(self):
        with _test_eager_guard():
            self.func_test_backward_success_1()
        self.func_test_backward_success_1()

    def func_test_backward_success_2(self):
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        # Although var_b is modified inplace after using it, it does not used in gradient computation.
        # The inplace operator doesn't result in incorrect gradient computation.
        grad_var_a, grad_var_a_inplace = 0, 1
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            var_c = self.inplace_api_processing(
                var_b)  # var_b is modified inplace before using it

            var_d = var_c + var_c  # Here, the grad op of sum doesn't use the value of var_b
            loss = var_d.sum()

            loss.backward()
281
            grad_var_a_inplace = var_a.grad.numpy()
282 283 284 285 286 287 288

        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

289
            var_c = self.non_inplace_api_processing(var_b)
290 291 292 293 294

            var_d = var_c + var_c  # Here, the grad op of sum doesn't use the value of var_b
            loss = var_d.sum()

            loss.backward()
295
            grad_var_a = var_a.grad.numpy()
296 297
        self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a))

298 299 300 301 302
    def test_backward_success_2(self):
        with _test_eager_guard():
            self.func_test_backward_success_2()
        self.func_test_backward_success_2()

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

class TestDygraphInplaceUnsqueeze(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.unsqueeze(var, -1)

    def inplace_api_processing(self, var):
        return paddle.unsqueeze_(var, -1)


class TestDygraphInplaceReshape(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.reshape(var, [-1])

    def inplace_api_processing(self, var):
        return paddle.reshape_(var, [-1])


320 321 322 323 324 325 326 327
class TestDygraphInplaceFlatten(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.flatten()

    def inplace_api_processing(self, var):
        return var.flatten_()


328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
class TestDygraphInplaceScatter(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.array([[1, 1], [2, 2], [3, 3]])
        self.dtype = "float32"

    def non_inplace_api_processing(self, var):
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
        updates = paddle.to_tensor(
            [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')

        return paddle.scatter(var, index, updates, overwrite=False)

    def inplace_api_processing(self, var):
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
        updates = paddle.to_tensor(
            [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')

        return paddle.scatter_(var, index, updates, overwrite=False)


class TestDygraphInplaceElu(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.elu(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.elu_(var)


class TestDygraphInplaceRelu(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.relu(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.relu_(var)


class TestDygraphInplaceSoftmax(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.softmax(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.softmax_(var)


class TestDygraphInplaceTanh(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.tanh(var)

    def inplace_api_processing(self, var):
        return paddle.tanh_(var)


380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
class TestDygraphInplaceCeil(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.ceil()

    def inplace_api_processing(self, var):
        return var.ceil_()


class TestDygraphInplaceFloor(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.floor()

    def inplace_api_processing(self, var):
        return var.floor_()


class TestDygraphInplaceExp(TestDygraphInplace):
    def set_np_compare_func(self):
        self.np_compare = np.allclose

    def non_inplace_api_processing(self, var):
        return var.exp()

    def inplace_api_processing(self, var):
        return var.exp_()


class TestDygraphInplaceReciprocal(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.reciprocal()

    def inplace_api_processing(self, var):
        return var.reciprocal_()


class TestDygraphInplaceRound(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.round()

    def inplace_api_processing(self, var):
        return var.round_()


class TestDygraphInplaceSqrt(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.random.uniform(0, 5, [10, 20, 1])
        self.dtype = "float32"

    def non_inplace_api_processing(self, var):
        return var.sqrt()

    def inplace_api_processing(self, var):
        return var.sqrt_()


class TestDygraphInplaceRsqrt(TestDygraphInplaceSqrt):
    def non_inplace_api_processing(self, var):
        return var.rsqrt()

    def inplace_api_processing(self, var):
        return var.rsqrt_()


class TestDygraphInplaceClip(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.clip(0.6, 1.5)

    def inplace_api_processing(self, var):
        return var.clip_(0.6, 1.5)


class TestDygraphInplaceScale(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.scale(scale=2.0, bias=3.0)

    def inplace_api_processing(self, var):
        return var.scale_(scale=2.0, bias=3.0)


class TestDygraphInplaceAdd(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.random.rand(2, 3, 4)
        self.dtype = "float32"
463
        self.input_var_numpy_2 = np.random.rand(2, 3, 4).astype(self.dtype)
464 465

    def non_inplace_api_processing(self, var):
466 467
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.add(input_var_2)
468 469

    def inplace_api_processing(self, var):
470 471
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.add_(input_var_2)
472 473 474 475


class TestDygraphInplaceSubtract(TestDygraphInplaceAdd):
    def non_inplace_api_processing(self, var):
476 477
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.subtract(input_var_2)
478 479

    def inplace_api_processing(self, var):
480 481
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.subtract_(input_var_2)
482 483


484
class TestLossIsInplaceVar(unittest.TestCase):
485
    def func_test_loss_is_inplace_var(self):
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones((2, 2))
            var_a.stop_gradient = False

            var_b = var_a * 2
            loss = var_b.tanh_()

            loss.backward()
            inplace_grad_var_a = var_a.grad.numpy()

        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones((2, 2))
            var_a.stop_gradient = False

            var_b = var_a * 2
            loss = var_b.tanh()

            loss.backward()
            grad_var_a = var_a.grad.numpy()

        self.assertTrue(np.array_equal(inplace_grad_var_a, grad_var_a))

508 509 510 511 512
    def test_loss_is_inplace_var(self):
        with _test_eager_guard():
            self.func_test_loss_is_inplace_var()
        self.func_test_loss_is_inplace_var()

513

514
class TestContinuouslyInplace(unittest.TestCase):
515
    def func_test_continuously_inplace(self):
516 517 518 519 520 521 522 523 524 525
        a = paddle.rand([2, 3])
        a.stop_gradient = False
        b = a * 2

        b.reshape_([-1])
        b.reshape_([2, 3])
        b.reshape_([-1])

        b.backward()

526 527 528 529 530
    def test_continuously_inplace(self):
        with _test_eager_guard():
            self.func_test_continuously_inplace()
        self.func_test_continuously_inplace()

531

532 533
if __name__ == '__main__':
    unittest.main()