test_inplace.py 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle
import paddle.fluid.core as core


class TestInplace(unittest.TestCase):
    def test_forward_version(self):
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32))
            self.assertEqual(var.inplace_version, 0)

            var[0] = 1.1
            self.assertEqual(var.inplace_version, 1)

33
            paddle.assign(paddle.ones(shape=[3]), var)
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

            # NOTE(liym27): assign(input, output) is an inplace operation for output.
            # There is inplace-related processing for api assign, var.inplace_version should be 2 not 1.
            self.assertEqual(var.inplace_version, 2)

            var[2] = 3
            self.assertEqual(var.inplace_version, 3)

    def test_backward_error(self):
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            var_b[1:2] = 3.3  # var_b is modified inplace after using it

            var_d = var_b**2

            loss = paddle.nn.functional.relu(var_c + var_d)
            with self.assertRaisesRegexp(
                    RuntimeError,
                    "received tensor_version:{} != wrapper_version_snapshot:{}".
                    format(1, 0)):
                loss.backward()

    def test_backward_success_1(self):
        # var_b is modified inplace before using it, the inplace operator doesn't result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2
            var_b[1:2] = 3  # var_b is modified inplace before using it

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            loss = var_c.sum()
            loss.backward()

    def test_backward_success_2(self):
        # Although var_b is modified inplace after using it, it does not used in gradient computation.
        # The inplace operator doesn't result in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            var_b[1:2] = 3  # var_b is modified inplace before using it

            var_c = var_b + var_b  # Here, the grad op of sum doesn't use the value of var_b
            loss = var_c.sum()

            var_b[1:2] = 3  # var_b is modified inplace after using it

            loss.backward()


98 99 100
class TestDygraphInplace(unittest.TestCase):
    def setUp(self):
        self.init_data()
101
        self.set_np_compare_func()
102 103

    def init_data(self):
104
        self.input_var_numpy = np.random.uniform(-5, 5, [10, 20, 1])
105 106
        self.dtype = "float32"

107 108 109
    def set_np_compare_func(self):
        self.np_compare = np.array_equal

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    def non_inplace_api_processing(self, var):
        return paddle.squeeze(var)

    def inplace_api_processing(self, var):
        return paddle.squeeze_(var)

    def test_inplace_api(self):
        var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
        inplace_var = self.inplace_api_processing(var)
        self.assertTrue(id(var) == id(inplace_var))

        inplace_var[0] = 2.
        self.assertTrue(np.array_equal(var.numpy(), inplace_var.numpy()))

    def test_forward_version(self):
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            self.assertEqual(var.inplace_version, 0)

            inplace_var = self.inplace_api_processing(var)
            self.assertEqual(var.inplace_version, 1)

            inplace_var[0] = 2.
            self.assertEqual(var.inplace_version, 2)

            inplace_var = self.inplace_api_processing(inplace_var)
            self.assertEqual(var.inplace_version, 3)

    def test_leaf_inplace_var_error(self):
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var.stop_gradient = False

            def leaf_inplace_error():
                self.inplace_api_processing(var)

            self.assertRaises(ValueError, leaf_inplace_error)

    def test_backward_error(self):
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            self.inplace_api_processing(var_b)

            loss = paddle.nn.functional.relu(var_c)
            with self.assertRaisesRegexp(
                    RuntimeError,
                    "received tensor_version:{} != wrapper_version_snapshot:{}".
                    format(1, 0)):
                loss.backward()

    def test_backward_success_1(self):
        # var_b is modified inplace before using it, the inplace operator doesn't result
        # in incorrect gradient computation.
        grad_var_a, grad_var_a_inplace = 0, 1
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2
            var_c = self.inplace_api_processing(
                var_b)  # var_b is modified inplace before using it

            # Here, the gradient computation will use the value of var_b
            var_d = var_c**2
            loss = var_d.sum()
            loss.backward()
184
            grad_var_a_inplace = var_a.grad.numpy()
185 186 187 188 189 190 191 192 193 194

        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2
            var_c = self.non_inplace_api_processing(var_b)
            var_d = var_c**2
            loss = var_d.sum()
            loss.backward()
195
            grad_var_a = var_a.grad.numpy()
196

197
        self.assertTrue(self.np_compare(grad_var_a_inplace, grad_var_a))
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

    def test_backward_success_2(self):
        # Although var_b is modified inplace after using it, it does not used in gradient computation.
        # The inplace operator doesn't result in incorrect gradient computation.
        grad_var_a, grad_var_a_inplace = 0, 1
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            var_c = self.inplace_api_processing(
                var_b)  # var_b is modified inplace before using it

            var_d = var_c + var_c  # Here, the grad op of sum doesn't use the value of var_b
            loss = var_d.sum()

            loss.backward()
216
            grad_var_a_inplace = var_a.grad.numpy()
217 218 219 220 221 222 223 224 225 226 227 228 229 230

        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            var_c = self.non_inplace_api_processing(
                var_b)  # var_b is modified inplace before using it

            var_d = var_c + var_c  # Here, the grad op of sum doesn't use the value of var_b
            loss = var_d.sum()

            loss.backward()
231
            grad_var_a = var_a.grad.numpy()
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a))


class TestDygraphInplaceUnsqueeze(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.unsqueeze(var, -1)

    def inplace_api_processing(self, var):
        return paddle.unsqueeze_(var, -1)


class TestDygraphInplaceReshape(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.reshape(var, [-1])

    def inplace_api_processing(self, var):
        return paddle.reshape_(var, [-1])


251 252 253 254 255 256 257 258
class TestDygraphInplaceFlatten(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.flatten()

    def inplace_api_processing(self, var):
        return var.flatten_()


259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
class TestDygraphInplaceScatter(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.array([[1, 1], [2, 2], [3, 3]])
        self.dtype = "float32"

    def non_inplace_api_processing(self, var):
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
        updates = paddle.to_tensor(
            [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')

        return paddle.scatter(var, index, updates, overwrite=False)

    def inplace_api_processing(self, var):
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
        updates = paddle.to_tensor(
            [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')

        return paddle.scatter_(var, index, updates, overwrite=False)


class TestDygraphInplaceElu(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.elu(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.elu_(var)


class TestDygraphInplaceRelu(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.relu(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.relu_(var)


class TestDygraphInplaceSoftmax(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.softmax(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.softmax_(var)


class TestDygraphInplaceTanh(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.tanh(var)

    def inplace_api_processing(self, var):
        return paddle.tanh_(var)


311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
class TestDygraphInplaceCeil(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.ceil()

    def inplace_api_processing(self, var):
        return var.ceil_()


class TestDygraphInplaceFloor(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.floor()

    def inplace_api_processing(self, var):
        return var.floor_()


class TestDygraphInplaceExp(TestDygraphInplace):
    def set_np_compare_func(self):
        self.np_compare = np.allclose

    def non_inplace_api_processing(self, var):
        return var.exp()

    def inplace_api_processing(self, var):
        return var.exp_()


class TestDygraphInplaceReciprocal(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.reciprocal()

    def inplace_api_processing(self, var):
        return var.reciprocal_()


class TestDygraphInplaceRound(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.round()

    def inplace_api_processing(self, var):
        return var.round_()


class TestDygraphInplaceSqrt(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.random.uniform(0, 5, [10, 20, 1])
        self.dtype = "float32"

    def non_inplace_api_processing(self, var):
        return var.sqrt()

    def inplace_api_processing(self, var):
        return var.sqrt_()


class TestDygraphInplaceRsqrt(TestDygraphInplaceSqrt):
    def non_inplace_api_processing(self, var):
        return var.rsqrt()

    def inplace_api_processing(self, var):
        return var.rsqrt_()


class TestDygraphInplaceClip(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.clip(0.6, 1.5)

    def inplace_api_processing(self, var):
        return var.clip_(0.6, 1.5)


class TestDygraphInplaceScale(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.scale(scale=2.0, bias=3.0)

    def inplace_api_processing(self, var):
        return var.scale_(scale=2.0, bias=3.0)


class TestDygraphInplaceAdd(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.random.rand(2, 3, 4)
        self.dtype = "float32"
        input_var_numpy_2 = np.random.rand(2, 3, 4).astype(self.dtype)
        self.input_var_2 = paddle.to_tensor(input_var_numpy_2)

    def non_inplace_api_processing(self, var):
        return var.add(self.input_var_2)

    def inplace_api_processing(self, var):
        return var.add_(self.input_var_2)


class TestDygraphInplaceSubtract(TestDygraphInplaceAdd):
    def non_inplace_api_processing(self, var):
        return var.subtract(self.input_var_2)

    def inplace_api_processing(self, var):
        return var.subtract_(self.input_var_2)


412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
class TestLossIsInplaceVar(unittest.TestCase):
    def test_loss_is_inplace_var(self):
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones((2, 2))
            var_a.stop_gradient = False

            var_b = var_a * 2
            loss = var_b.tanh_()

            loss.backward()
            inplace_grad_var_a = var_a.grad.numpy()

        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones((2, 2))
            var_a.stop_gradient = False

            var_b = var_a * 2
            loss = var_b.tanh()

            loss.backward()
            grad_var_a = var_a.grad.numpy()

        self.assertTrue(np.array_equal(inplace_grad_var_a, grad_var_a))


437 438 439 440 441 442 443 444 445 446 447 448 449
class TestContinuouslyInplace(unittest.TestCase):
    def test_continuously_inplace(self):
        a = paddle.rand([2, 3])
        a.stop_gradient = False
        b = a * 2

        b.reshape_([-1])
        b.reshape_([2, 3])
        b.reshape_([-1])

        b.backward()


450 451
if __name__ == '__main__':
    unittest.main()