nccl_op_test.cu 8.9 KB
Newer Older
D
Dong Zhihong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
Dong Zhihong 已提交
15 16
#include <glog/logging.h>
#include <gtest/gtest.h>
D
Dong Zhihong 已提交
17
#include <algorithm>
D
Dong Zhihong 已提交
18
#include <memory>
D
Dong Zhihong 已提交
19 20 21
#include <mutex>
#include <thread>
#include <utility>
D
Dong Zhihong 已提交
22
#include <vector>
D
Dong Zhihong 已提交
23

D
Dong Zhihong 已提交
24 25
#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_desc.h"
D
Dong Zhihong 已提交
26
#include "paddle/framework/op_registry.h"
D
Dong Zhihong 已提交
27 28
#include "paddle/framework/program_desc.h"
#include "paddle/framework/var_desc.h"
D
Dong Zhihong 已提交
29
#include "paddle/operators/math/math_function.h"
D
Dong Zhihong 已提交
30
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
31 32 33
#include "paddle/platform/device_context.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
34
#include "paddle/platform/place.h"
D
Dong Zhihong 已提交
35

D
Dong Zhihong 已提交
36
USE_NO_KERNEL_OP(ncclInit);
D
Dong Zhihong 已提交
37 38
USE_GPU_ONLY_OP(ncclAllReduce);
USE_GPU_ONLY_OP(ncclReduce);
D
Dong Zhihong 已提交
39
USE_GPU_ONLY_OP(ncclBcast);
D
Dong Zhihong 已提交
40

D
Dong Zhihong 已提交
41 42 43
namespace f = paddle::framework;
namespace p = paddle::platform;

D
Dong Zhihong 已提交
44
static std::vector<int> gpu_list;
D
Dong Zhihong 已提交
45 46 47

// test data amount
const f::DDim kDims = {100, 100};
D
Dong Zhihong 已提交
48

D
Dong Zhihong 已提交
49 50 51 52 53 54 55 56 57 58 59 60
// nccl op common tester, init communicator.
class NCCLTester : public ::testing::Test {
 public:
  virtual void SetUp() override {
    cpu_ctx = new p::CPUDeviceContext(p::CPUPlace());
    for (size_t i = 0; i < gpu_list.size(); ++i) {
      p::GPUPlace place(i);
      dev_ctxs.emplace_back(new p::CUDADeviceContext(place));
    }

    NCCLInitOp();
  }
D
Dong Zhihong 已提交
61

D
Dong Zhihong 已提交
62 63 64 65 66
  virtual void TearDown() override {
    for (auto &device_context : dev_ctxs) {
      delete device_context;
    }
  }
D
Dong Zhihong 已提交
67

D
Dong Zhihong 已提交
68 69
  void NCCLInitOp() {
    std::unique_ptr<f::OpDescBind> op1(new f::OpDescBind);
D
Dong Zhihong 已提交
70

D
Dong Zhihong 已提交
71 72 73
    op1->SetType("ncclInit");
    op1->SetOutput("Communicator", {"comm"});
    op1->SetAttr("gpus", {gpu_list});
D
Dong Zhihong 已提交
74

D
Dong Zhihong 已提交
75 76
    auto *var = g_scope.Var("comm");
    var->GetMutable<p::Communicator>();
77

D
Dong Zhihong 已提交
78 79 80 81 82 83 84 85 86 87
    auto op = f::OpRegistry::CreateOp(*op1);
    VLOG(1) << "invoke NCCLInitOp.";
    op->Run(g_scope, *cpu_ctx);
    VLOG(1) << "NCCLInitOp finished.";
  }

  template <class T>
  void PerThreadProgram(int gpu_id, const f::OpDescBind &op_desc,
                        f::Scope *scope) {
    std::unique_lock<std::mutex> lk(mu);
D
Dong Zhihong 已提交
88
    const f::OpDescBind *op1 = &op_desc;
D
Dong Zhihong 已提交
89 90 91 92 93 94 95

    p::GPUPlace place(gpu_id);
    auto &ctx = dev_ctxs.at(gpu_id);

    auto *send_tensor = scope->Var("st")->GetMutable<f::LoDTensor>();
    auto *recv_tensor = scope->Var("rt")->GetMutable<f::LoDTensor>();

D
Dong Zhihong 已提交
96 97 98 99 100 101 102 103 104 105
    if (!send_tensor->numel()) {
      send_tensor->Resize(kDims);
      send_tensor->mutable_data<T>(kDims, place);

      std::vector<T> send_vector(f::product(kDims), gpu_id);
      send_tensor->CopyFromVector<T>(send_vector, *ctx);
      ctx->Wait();
      VLOG(1) << "Send Tensor filled with elements " << send_tensor->numel();
    }

D
Dong Zhihong 已提交
106
    lk.unlock();
D
Dong Zhihong 已提交
107

D
Dong Zhihong 已提交
108 109 110 111
    PADDLE_ENFORCE(send_tensor->numel() == f::product(kDims),
                   "Tensor numel not match!");

    auto op = f::OpRegistry::CreateOp(*op1);
D
Dong Zhihong 已提交
112

D
Dong Zhihong 已提交
113
    VLOG(1) << "Device : " << gpu_id << " invoke " << op_desc.Type();
D
Dong Zhihong 已提交
114 115
    VLOG(1) << " send_tensor : " << send_tensor->numel()
            << " recv_tensor : " << recv_tensor->numel();
D
Dong Zhihong 已提交
116 117 118
    op->Run(*scope, *ctx);
    VLOG(1) << "Device : " << gpu_id << " finished " << op_desc.Type();
  }
119

D
Dong Zhihong 已提交
120 121 122 123 124 125 126
 public:
  std::vector<p::DeviceContext *> dev_ctxs;
  p::DeviceContext *cpu_ctx;
  f::Scope g_scope;
  std::mutex mu;
};

127 128 129 130 131 132 133 134 135 136 137 138 139
// ncclInitOp with desc
TEST(NCCL, ncclInitOp) {
  std::unique_ptr<f::OpDescBind> op_desc(new f::OpDescBind);

  op_desc->SetType("ncclInit");
  op_desc->SetOutput("Communicator", {"x1"});
  op_desc->SetAttr("gpus", {gpu_list});

  f::Scope g_scope;
  std::unique_ptr<p::DeviceContext> ctx(new p::CPUDeviceContext(p::CPUPlace()));

  auto *var = g_scope.Var("x1");
  var->GetMutable<p::Communicator>();
D
Dong Zhihong 已提交
140

141 142 143 144 145 146 147 148
  auto op = f::OpRegistry::CreateOp(*op_desc);
  VLOG(1) << "invoke NCCLInitOp.";
  op->Run(g_scope, *ctx.get());
  VLOG(1) << "NCCLInitOp finished.";
}

// ncclAllReduceOp with desc
TEST_F(NCCLTester, ncclAllReduceOp) {
D
Dong Zhihong 已提交
149
  std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
150 151
  op2->SetType("ncclAllReduce");
  op2->SetInput("X", {"st"});
D
Dong Zhihong 已提交
152
  op2->SetInput("Communicator", {"comm"});
153
  op2->SetOutput("Out", {"rt"});
D
Dong Zhihong 已提交
154 155

  std::vector<f::Scope *> dev_scopes;
D
Dong Zhihong 已提交
156 157

  std::vector<std::thread> ths;
D
Dong Zhihong 已提交
158 159 160 161 162 163 164

  for (size_t i = 0; i < gpu_list.size(); ++i) {
    dev_scopes.emplace_back(&g_scope.NewScope());
    std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
                   *op2.get(), dev_scopes[i]);
    ths.emplace_back(std::move(th));
  }
D
Dong Zhihong 已提交
165

D
Dong Zhihong 已提交
166 167 168
  for (size_t i = 0; i < gpu_list.size(); ++i) {
    ths[i].join();
  }
D
Dong Zhihong 已提交
169

D
Dong Zhihong 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  // check results
  float result = std::accumulate(gpu_list.begin(), gpu_list.end(), 0);

  for (size_t i = 0; i < dev_scopes.size(); ++i) {
    p::CPUPlace cpu_place;
    p::GPUPlace gpu_place(gpu_list[i]);

    auto &recv_tensor = dev_scopes[i]->FindVar("rt")->Get<f::LoDTensor>();
    auto *rt = recv_tensor.data<float>();
    auto *result_tensor = dev_scopes[i]->Var("ct")->GetMutable<f::LoDTensor>();
    result_tensor->Resize(kDims);
    auto *ct = result_tensor->mutable_data<float>(cpu_place);

    paddle::memory::Copy(
        cpu_place, ct, p::GPUPlace(gpu_list[i]), rt,
        recv_tensor.numel() * sizeof(float),
        static_cast<p::CUDADeviceContext *>(dev_ctxs[i])->stream());

188
    for (size_t j = 0; j < f::product(kDims); ++j) {
D
Dong Zhihong 已提交
189 190 191 192
      ASSERT_NEAR(ct[j], result, 1e-5);
    }
  }
}
D
Dong Zhihong 已提交
193

D
dzhwinter 已提交
194
// ncclReduceOp with desc
195 196 197 198 199 200 201
TEST_F(NCCLTester, ncclReduceOp) {
  std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
  const int kRoot = 0;
  op2->SetType("ncclReduce");
  op2->SetInput("X", {"st"});
  op2->SetInput("Communicator", {"comm"});
  op2->SetOutput("Out", {"rt"});
D
dzhwinter 已提交
202
  op2->SetAttr("root", kRoot);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

  std::vector<f::Scope *> dev_scopes;

  std::vector<std::thread> ths;

  for (size_t i = 0; i < gpu_list.size(); ++i) {
    dev_scopes.emplace_back(&g_scope.NewScope());
    std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
                   *op2.get(), dev_scopes[i]);
    ths.emplace_back(std::move(th));
  }

  for (size_t i = 0; i < gpu_list.size(); ++i) {
    ths[i].join();
  }

  // check results on
  float result = std::accumulate(gpu_list.begin(), gpu_list.end(), 0);

  p::CPUPlace cpu_place;
  p::GPUPlace gpu_place(gpu_list[kRoot]);

  auto &recv_tensor = dev_scopes[kRoot]->FindVar("rt")->Get<f::LoDTensor>();
  auto *rt = recv_tensor.data<float>();
  auto *result_tensor =
      dev_scopes[kRoot]->Var("ct")->GetMutable<f::LoDTensor>();
  result_tensor->Resize(kDims);
  auto *ct = result_tensor->mutable_data<float>(cpu_place);

  paddle::memory::Copy(
      cpu_place, ct, p::GPUPlace(gpu_list[kRoot]), rt,
      recv_tensor.numel() * sizeof(float),
      static_cast<p::CUDADeviceContext *>(dev_ctxs[kRoot])->stream());

  for (int j = 0; j < f::product(kDims); ++j) {
    ASSERT_NEAR(ct[j], result, 1e-5);
  }
}

D
dzhwinter 已提交
242
// ncclBcastOp with desc
243 244 245 246 247 248 249
TEST_F(NCCLTester, ncclBcastOp) {
  std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
  const int kRoot = 5;
  op2->SetType("ncclBcast");
  op2->SetInput("X", {"st"});
  op2->SetInput("Communicator", {"comm"});
  op2->SetOutput("Out", {"rt"});
D
dzhwinter 已提交
250
  op2->SetAttr("root", kRoot);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

  std::vector<f::Scope *> dev_scopes;

  std::vector<std::thread> ths;

  for (size_t i = 0; i < gpu_list.size(); ++i) {
    dev_scopes.emplace_back(&g_scope.NewScope());
    std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
                   *op2.get(), dev_scopes[i]);
    ths.emplace_back(std::move(th));
  }

  for (size_t i = 0; i < gpu_list.size(); ++i) {
    ths[i].join();
  }

  const int idx = 1;
  // check results on
  float result = kRoot;

  p::CPUPlace cpu_place;
  p::GPUPlace gpu_place(gpu_list[idx]);

  auto &recv_tensor = dev_scopes[idx]->FindVar("rt")->Get<f::LoDTensor>();
  auto *rt = recv_tensor.data<float>();
  auto *result_tensor = dev_scopes[idx]->Var("ct")->GetMutable<f::LoDTensor>();
  result_tensor->Resize(kDims);
  auto *ct = result_tensor->mutable_data<float>(cpu_place);

  paddle::memory::Copy(
      cpu_place, ct, p::GPUPlace(gpu_list[idx]), rt,
      recv_tensor.numel() * sizeof(float),
      static_cast<p::CUDADeviceContext *>(dev_ctxs[idx])->stream());

  for (size_t j = 0; j < f::product(kDims); ++j) {
    ASSERT_NEAR(ct[j], result, 1e-5);
  }
}

D
Dong Zhihong 已提交
290
int main(int argc, char **argv) {
D
Dong Zhihong 已提交
291
  const int dev_count = p::GetCUDADeviceCount();
D
Dong Zhihong 已提交
292 293 294 295 296 297
  if (dev_count <= 1) {
    LOG(WARNING)
        << "Cannot test multi-gpu nccl, because the CUDA device count is "
        << dev_count;
    return 0;
  }
D
Dong Zhihong 已提交
298 299 300 301

  for (int i = 0; i < dev_count; ++i) {
    gpu_list.emplace_back(i);
  }
D
Dong Zhihong 已提交
302
  testing::InitGoogleTest(&argc, argv);
D
Dong Zhihong 已提交
303 304 305

  // device context should be release before scope.
  // otherwise driver will down.
D
Dong Zhihong 已提交
306 307
  return RUN_ALL_TESTS();
}