dropout_op_xpu.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dropout_op.h"
#include <memory>
#include <string>
14
#include "paddle/fluid/platform/device/device_wrapper.h"
15 16 17 18
namespace paddle {
namespace operators {

#ifdef PADDLE_WITH_XPU
19

20 21
template <typename DeviceContext, typename T>
class DropoutXPUKernel : public framework::OpKernel<T> {
22 23
  using XPUTyp = typename XPUTypeTrait<T>::Type;

24 25 26 27 28 29 30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Output<Tensor>("Out");
    const auto* x_data = x->data<T>();
    auto* y_data = y->mutable_data<T>(context.GetPlace());
    float dropout_prob = context.Attr<float>("dropout_prob");
    auto dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
33 34
    auto& dev_ctx = context.template device_context<DeviceContext>();

35 36 37
    auto* seed =
        context.HasInput("Seed") ? context.Input<Tensor>("Seed") : nullptr;

38 39
    int is_upscale = (dropout_implementation == "upscale_in_train");

40
    if (!context.Attr<bool>("is_test")) {
41 42 43
      int seed_data = 0;
      if (seed) {
        seed_data = *(seed->data<int>());
44
      } else {
45 46
        seed_data =
            context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : 0;
47
      }
48

49 50
      auto* mask = context.Output<Tensor>("Mask");
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
51 52 53 54 55
      // Special case when dropout_prob is 1.0
      if (dropout_prob == 1.0f) {
        int r = xpu::constant(dev_ctx.x_context(),
                              reinterpret_cast<XPUTyp*>(y_data), y->numel(),
                              XPUTyp(0));
56
        PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
57 58 59
        r = xpu::constant(dev_ctx.x_context(),
                          reinterpret_cast<XPUTyp*>(mask_data), mask->numel(),
                          XPUTyp(0));
60
        PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
61
        return;
62
      }
63 64 65
      int r = xpu::dropout(dev_ctx.x_context(),
                           reinterpret_cast<const XPUTyp*>(x->data<T>()),
                           reinterpret_cast<XPUTyp*>(y->data<T>()),
66
                           reinterpret_cast<XPUTyp*>(mask_data), seed_data,
67
                           mask->numel(), is_upscale, dropout_prob);
68
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout");
69 70 71 72 73 74
    } else {
      float scale =
          (is_upscale) ? (1.0) : (static_cast<float>(1.0f - dropout_prob));
      int r = xpu::scale(
          dev_ctx.x_context(), reinterpret_cast<const XPUTyp*>(x_data),
          reinterpret_cast<XPUTyp*>(y_data), x->numel(), false, scale, 0.0f);
75
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
76 77 78 79 80
    }
  }
};
template <typename DeviceContext, typename T>
class DropoutGradXPUKernel : public framework::OpKernel<T> {
81
  using XPUType = typename XPUTypeTrait<T>::Type;
82

83 84
 public:
  void Compute(const framework::ExecutionContext& context) const override {
X
xiaoting 已提交
85 86 87
    PADDLE_ENFORCE_EQ(!context.Attr<bool>("is_test"), true,
                      platform::errors::InvalidArgument(
                          "GradOp is only callable when is_test is false"));
88 89 90 91 92
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = context.Input<Tensor>("Mask");
    grad_x->mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
93 94 95 96
    auto& dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
    float dropout_prob = context.Attr<float>("dropout_prob");
    const T* mask_data = mask->data<T>();
97 98 99 100 101 102 103

    if (dropout_implementation != "upscale_in_train") {
      int r = xpu::mul(dev_ctx.x_context(),
                       reinterpret_cast<const XPUType*>(grad_y->data<T>()),
                       reinterpret_cast<const XPUType*>(mask_data),
                       reinterpret_cast<XPUType*>(grad_x->data<T>()),
                       grad_y->numel());
104
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul");
105 106 107
      return;
    }

108
    auto version = platform::get_xpu_version(context.GetPlace().GetDeviceId());
W
Wilber 已提交
109
    if (version == pten::backends::xpu::XPUVersion::XPU1) {
110 111
      xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
      XPUType* mask_new = RAII_GUARD.alloc_l3_or_gm<XPUType>(mask->numel());
112 113 114
      float scale =
          (dropout_prob == 1.0f) ? (1.0f) : (1.0f / (1.0f - dropout_prob));
      int r = xpu::scale(dev_ctx.x_context(),
115 116 117
                         reinterpret_cast<const XPUType*>(mask->data<T>()),
                         reinterpret_cast<XPUType*>(mask_new), mask->numel(),
                         false, scale, 0.0f);
118
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
119 120 121 122 123
      r = xpu::mul(dev_ctx.x_context(),
                   reinterpret_cast<const XPUType*>(grad_y->data<T>()),
                   reinterpret_cast<const XPUType*>(mask_new),
                   reinterpret_cast<XPUType*>(grad_x->data<T>()),
                   grad_y->numel());
124
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul");
125 126 127 128 129 130 131
    } else {
      int r =
          xpu::dropout_grad(dev_ctx.x_context(),
                            reinterpret_cast<const XPUType*>(mask->data<T>()),
                            reinterpret_cast<const XPUType*>(grad_y->data<T>()),
                            reinterpret_cast<XPUType*>(grad_x->data<T>()),
                            dropout_prob, grad_y->numel());
132
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout_grad");
133
    }
134 135 136 137 138
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
139
namespace plat = paddle::platform;
140
REGISTER_OP_XPU_KERNEL(
141 142
    dropout, ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, plat::float16>);
143 144
REGISTER_OP_XPU_KERNEL(
    dropout_grad,
145 146 147
    ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext,
                              plat::float16>);
148
#endif