dropout_op_xpu.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dropout_op.h"
#include <memory>
#include <string>
14
#include "paddle/fluid/platform/device/device_wrapper.h"
15 16 17 18
namespace paddle {
namespace operators {

#ifdef PADDLE_WITH_XPU
19

20 21
template <typename DeviceContext, typename T>
class DropoutXPUKernel : public framework::OpKernel<T> {
22 23
  using XPUTyp = typename XPUTypeTrait<T>::Type;

24 25 26 27 28 29 30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Output<Tensor>("Out");
    const auto* x_data = x->data<T>();
    auto* y_data = y->mutable_data<T>(context.GetPlace());
    float dropout_prob = context.Attr<float>("dropout_prob");
    auto dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
33 34
    auto& dev_ctx = context.template device_context<DeviceContext>();

35 36 37
    PADDLE_ENFORCE_EQ(!context.HasInput("Seed"), true,
                      platform::errors::InvalidArgument(
                          ("Input(Seed) not supported on XPU")));
38 39
    int is_upscale = (dropout_implementation == "upscale_in_train");

40
    if (!context.Attr<bool>("is_test")) {
41 42 43 44 45 46
      std::random_device rnd;
      // int seed = (context.Attr<bool>("fix_seed")) ?
      // int(context.Attr<int>("seed")) : (rnd());
      int seed = 0;
      if (context.Attr<bool>("fix_seed") == true) {
        seed = static_cast<int>(context.Attr<int>("seed"));
47
      } else {
48
        seed = rnd();
49
      }
50

51 52
      auto* mask = context.Output<Tensor>("Mask");
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
53 54 55 56 57
      // Special case when dropout_prob is 1.0
      if (dropout_prob == 1.0f) {
        int r = xpu::constant(dev_ctx.x_context(),
                              reinterpret_cast<XPUTyp*>(y_data), y->numel(),
                              XPUTyp(0));
58
        PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant ");
59 60 61
        r = xpu::constant(dev_ctx.x_context(),
                          reinterpret_cast<XPUTyp*>(mask_data), mask->numel(),
                          XPUTyp(0));
62
        PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant ");
63
        return;
64
      }
65 66 67 68 69
      int r = xpu::dropout(dev_ctx.x_context(),
                           reinterpret_cast<const XPUTyp*>(x->data<T>()),
                           reinterpret_cast<XPUTyp*>(y->data<T>()),
                           reinterpret_cast<XPUTyp*>(mask_data), seed,
                           mask->numel(), is_upscale, dropout_prob);
70
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout ");
71 72 73 74 75 76
    } else {
      float scale =
          (is_upscale) ? (1.0) : (static_cast<float>(1.0f - dropout_prob));
      int r = xpu::scale(
          dev_ctx.x_context(), reinterpret_cast<const XPUTyp*>(x_data),
          reinterpret_cast<XPUTyp*>(y_data), x->numel(), false, scale, 0.0f);
77
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale ");
78 79 80 81 82
    }
  }
};
template <typename DeviceContext, typename T>
class DropoutGradXPUKernel : public framework::OpKernel<T> {
83
  using XPUType = typename XPUTypeTrait<T>::Type;
84

85 86
 public:
  void Compute(const framework::ExecutionContext& context) const override {
X
xiaoting 已提交
87 88 89
    PADDLE_ENFORCE_EQ(!context.Attr<bool>("is_test"), true,
                      platform::errors::InvalidArgument(
                          "GradOp is only callable when is_test is false"));
90 91 92 93 94
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = context.Input<Tensor>("Mask");
    grad_x->mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
95 96 97 98
    auto& dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
    float dropout_prob = context.Attr<float>("dropout_prob");
    const T* mask_data = mask->data<T>();
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

    if (dropout_implementation != "upscale_in_train") {
      int r = xpu::mul(dev_ctx.x_context(),
                       reinterpret_cast<const XPUType*>(grad_y->data<T>()),
                       reinterpret_cast<const XPUType*>(mask_data),
                       reinterpret_cast<XPUType*>(grad_x->data<T>()),
                       grad_y->numel());
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul ");
      return;
    }

    paddle::platform::XPUVersion version = dev_ctx.xpu_version();
    if (version == paddle::platform::XPUVersion::XPU1) {
      xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
      XPUType* mask_new = RAII_GUARD.alloc_l3_or_gm<XPUType>(mask->numel());
114 115 116
      float scale =
          (dropout_prob == 1.0f) ? (1.0f) : (1.0f / (1.0f - dropout_prob));
      int r = xpu::scale(dev_ctx.x_context(),
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
                         reinterpret_cast<const XPUType*>(mask->data<T>()),
                         reinterpret_cast<XPUType*>(mask_new), mask->numel(),
                         false, scale, 0.0f);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale ");
      r = xpu::mul(dev_ctx.x_context(),
                   reinterpret_cast<const XPUType*>(grad_y->data<T>()),
                   reinterpret_cast<const XPUType*>(mask_new),
                   reinterpret_cast<XPUType*>(grad_x->data<T>()),
                   grad_y->numel());
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul ");
    } else {
      int r =
          xpu::dropout_grad(dev_ctx.x_context(),
                            reinterpret_cast<const XPUType*>(mask->data<T>()),
                            reinterpret_cast<const XPUType*>(grad_y->data<T>()),
                            reinterpret_cast<XPUType*>(grad_x->data<T>()),
                            dropout_prob, grad_y->numel());
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout_grad ");
135
    }
136 137 138 139 140
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
141
namespace plat = paddle::platform;
142
REGISTER_OP_XPU_KERNEL(
143 144
    dropout, ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, plat::float16>);
145 146
REGISTER_OP_XPU_KERNEL(
    dropout_grad,
147 148 149
    ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext,
                              plat::float16>);
150
#endif