attribute.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ..framework import core
16
from ..framework import LayerHelper
17
from ..fluid.data_feeder import check_variable_and_dtype
18 19 20 21
from ..fluid.data_feeder import check_type

from .creation import assign
from .creation import _complex_to_real_dtype
22

Z
zyfncg 已提交
23
# TODO: define functions to get tensor attributes
24
import paddle
25
from paddle import _C_ops, _legacy_C_ops
26
from ..static import Variable
Z
zyfncg 已提交
27
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
28

29 30
import numpy as np

31 32
__all__ = []

33

34 35 36
def rank(input):
    """

C
Chen Long 已提交
37
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
38 39

    Args:
C
Chen Long 已提交
40
        input (Tensor): The input Tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    Returns:
        Tensor, the output data type is int32.: The 0-D tensor with the dimensions of the input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand((3, 100, 100))
            rank = paddle.rank(input)
            print(rank)
            # 3
    """
    check_type(input, 'input', (Variable), 'input')
    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


def shape(input):
    """
    Get the shape of the input.

    .. code-block:: text

        Case1:
            Given N-D Tensor:
                input = [ [1, 2, 3, 4], [5, 6, 7, 8] ]

            Then:
                input.shape = [2, 4]

        Case2:
            Given SelectedRows:
                input.rows = [0, 4, 19]
                input.height = 20
                input.value = [ [1, 2], [3, 4], [5, 6] ]  # inner tensor
            Then:
                input.shape = [3, 2]

    Args:
        input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64.
                          If input variable is type of SelectedRows, returns the shape of it's inner tensor.

    Returns:
        Variable (Tensor): The shape of the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()

            inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
    """
    if in_dygraph_mode():
110
        out = _C_ops.shape(input)
111 112 113
        out.stop_gradient = True
        return out
    if _in_legacy_dygraph():
114
        out = _legacy_C_ops.shape(input)
115 116
        out.stop_gradient = True
        return out
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'shape',
    )
133 134
    helper = LayerHelper('shape', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
135 136 137 138 139 140
    helper.append_op(
        type='shape',
        inputs={'Input': input},
        outputs={'Out': out},
        stop_gradient=True,
    )
141

142
    return out
143 144 145


def is_complex(x):
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    """Return whether x is a tensor of complex data type(complex64 or complex128).

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the data type of the input is complex data type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1 + 2j, 3 + 4j])
            print(paddle.is_complex(x))
            # True

            x = paddle.to_tensor([1.1, 1.2])
            print(paddle.is_complex(x))
            # False

            x = paddle.to_tensor([1, 2, 3])
            print(paddle.is_complex(x))
            # False
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
172 173 174
        raise TypeError(
            "Expected Tensor, but received type of x: {}".format(type(x))
        )
175
    dtype = x.dtype
176 177 178 179
    is_complex_dtype = (
        dtype == core.VarDesc.VarType.COMPLEX64
        or dtype == core.VarDesc.VarType.COMPLEX128
    )
180 181 182 183
    return is_complex_dtype


def is_floating_point(x):
W
wuhuanzhou 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    """
    Returns whether the dtype of `x` is one of paddle.float64, paddle.float32, paddle.float16, and paddle.bfloat16.

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the dtype of `x` is floating type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.arange(1, 5, dtype='int32')
            print(paddle.is_floating_point(x))
            # True
            print(paddle.is_floating_point(y))
            # False
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
206 207 208
        raise TypeError(
            "Expected Tensor, but received type of x: {}".format(type(x))
        )
209
    dtype = x.dtype
210 211 212 213 214 215
    is_fp_dtype = (
        dtype == core.VarDesc.VarType.FP32
        or dtype == core.VarDesc.VarType.FP64
        or dtype == core.VarDesc.VarType.FP16
        or dtype == core.VarDesc.VarType.BF16
    )
216 217 218
    return is_fp_dtype


219
def is_integer(x):
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    """Return whether x is a tensor of integeral data type.

    Args:
        x (Tensor): The input tensor.

    Returns:
        bool: True if the data type of the input is integer data type, otherwise false.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1 + 2j, 3 + 4j])
            print(paddle.is_integer(x))
            # False

            x = paddle.to_tensor([1.1, 1.2])
            print(paddle.is_integer(x))
            # False

            x = paddle.to_tensor([1, 2, 3])
            print(paddle.is_integer(x))
            # True
    """
    if not isinstance(x, (paddle.Tensor, paddle.static.Variable)):
246 247 248
        raise TypeError(
            "Expected Tensor, but received type of x: {}".format(type(x))
        )
249
    dtype = x.dtype
250 251 252 253 254 255 256
    is_int_dtype = (
        dtype == core.VarDesc.VarType.UINT8
        or dtype == core.VarDesc.VarType.INT8
        or dtype == core.VarDesc.VarType.INT16
        or dtype == core.VarDesc.VarType.INT32
        or dtype == core.VarDesc.VarType.INT64
    )
257 258 259
    return is_int_dtype


260 261
def real(x, name=None):
    """
C
Chen Long 已提交
262
    Returns a new Tensor containing real values of the input Tensor.
263 264

    Args:
C
Chen Long 已提交
265
        x (Tensor): the input Tensor, its data type could be complex64 or complex128.
266 267
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name` .
268

269
    Returns:
C
Chen Long 已提交
270
        Tensor: a Tensor containing real values of the input Tensor.
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor(
                [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]])
            # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[(1+6j), (2+5j), (3+4j)],
            #         [(4+3j), (5+2j), (6+1j)]])

            real_res = paddle.real(x)
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])

            real_t = x.real()
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
    """
Z
zyfncg 已提交
293
    if in_dygraph_mode():
W
wanghuancoder 已提交
294
        return _C_ops.real(x)
295 296
    if _in_legacy_dygraph():
        return _legacy_C_ops.real(x)
297 298 299 300

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'real')
    helper = LayerHelper('real', **locals())
    out = helper.create_variable_for_type_inference(
301 302
        dtype=_complex_to_real_dtype(helper.input_dtype())
    )
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    helper.append_op(type='real', inputs={'X': x}, outputs={'Out': out})
    return out


def imag(x, name=None):
    """
    Returns a new tensor containing imaginary values of input tensor.

    Args:
        x (Tensor): the input tensor, its data type could be complex64 or complex128.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: a tensor containing imaginary values of the input tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor(
                [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]])
            # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
            #        [[(1+6j), (2+5j), (3+4j)],
            #         [(4+3j), (5+2j), (6+1j)]])

            imag_res = paddle.imag(x)
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[6., 5., 4.],
            #         [3., 2., 1.]])

            imag_t = x.imag()
            # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[6., 5., 4.],
            #         [3., 2., 1.]])
    """
Z
zyfncg 已提交
340
    if in_dygraph_mode():
W
wanghuancoder 已提交
341
        return _C_ops.imag(x)
342 343
    if _in_legacy_dygraph():
        return _legacy_C_ops.imag(x)
344 345 346 347

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'imag')
    helper = LayerHelper('imag', **locals())
    out = helper.create_variable_for_type_inference(
348 349
        dtype=_complex_to_real_dtype(helper.input_dtype())
    )
350 351
    helper.append_op(type='imag', inputs={'X': x}, outputs={'Out': out})
    return out