“f4ec1563be117df485d451f87b6eb5a0912f69d1”上不存在“paddle/fluid/git@gitcode.net:paddlepaddle/Paddle.git”
test_set_value_op.py 44.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Test set_value op in static mode

import unittest
import numpy as np

import paddle
21
import paddle.fluid as fluid
22 23
from paddle.fluid.layer_helper import LayerHelper
from functools import reduce
24
from paddle.fluid.framework import _test_eager_guard
25

26

27
class TestSetValueBase(unittest.TestCase):
28 29 30 31
    def setUp(self):
        paddle.enable_static()
        self.set_dtype()
        self.set_value()
32
        self.set_shape()
33 34 35
        self.data = np.ones(self.shape).astype(self.dtype)
        self.program = paddle.static.Program()

36 37 38
    def set_shape(self):
        self.shape = [2, 3, 4]

39 40 41 42 43 44 45 46 47 48 49 50 51 52
    def set_value(self):
        self.value = 6

    def set_dtype(self):
        self.dtype = "float32"

    def _call_setitem(self, x):
        x[0, 0] = self.value

    def _get_answer(self):
        self.data[0, 0] = self.value


class TestSetValueApi(TestSetValueBase):
53 54
    def _run_static(self):
        paddle.enable_static()
55 56 57 58 59 60
        with paddle.static.program_guard(self.program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            self._call_setitem(x)

        exe = paddle.static.Executor(paddle.CPUPlace())
        out = exe.run(self.program, fetch_list=[x])
61 62 63 64 65 66 67 68 69 70 71
        paddle.disable_static()
        return out

    def _run_dynamic(self):
        paddle.disable_static()
        x = paddle.ones(shape=self.shape, dtype=self.dtype)
        self._call_setitem(x)
        out = x.numpy()
        paddle.enable_static()
        return out

W
wanghuancoder 已提交
72
    def func_test_api(self):
73 74
        static_out = self._run_static()
        dynamic_out = self._run_dynamic()
75
        self._get_answer()
76

77 78 79 80 81 82 83 84 85 86 87
        error_msg = (
            "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
        )
        self.assertTrue(
            (self.data == static_out).all(),
            msg=error_msg.format("static", self.data, static_out),
        )
        self.assertTrue(
            (self.data == dynamic_out).all(),
            msg=error_msg.format("dynamic", self.data, dynamic_out),
        )
88

W
wanghuancoder 已提交
89 90 91 92 93
    def test_api(self):
        with _test_eager_guard():
            self.func_test_api()
        self.func_test_api()

94

95 96
# 1. Test different type of item: int, Python slice, Paddle Tensor
# 1.1 item is int
97 98 99 100 101 102 103 104
class TestSetValueItemInt(TestSetValueApi):
    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


105 106
# 1.2 item is slice
# 1.2.1 step is 1
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
class TestSetValueItemSlice(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:2] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemSlice2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1] = self.value

    def _get_answer(self):
        self.data[0:-1] = self.value


class TestSetValueItemSlice3(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1, 0:2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemSlice4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2, :] = self.value


139 140 141 142 143 144 145 146
class TestSetValueItemSlice5(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:1, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:1, :] = self.value


147 148 149 150 151 152 153 154 155 156
class TestSetValueItemSliceInWhile(TestSetValueApi):
    def _call_setitem(self, x):
        def cond(i, x):
            return i < 1

        def body(i, x):
            x[i] = self.value
            i = i + 1
            return i, x

157
        i = paddle.zeros(shape=(1,), dtype='int32')
158 159 160 161 162 163
        i, x = paddle.fluid.layers.while_loop(cond, body, [i, x])

    def _get_answer(self):
        self.data[0] = self.value


164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
# 1.2.2 step > 1
class TestSetValueItemSliceStep(TestSetValueApi):
    def set_shape(self):
        self.shape = [5, 5, 5]

    def _call_setitem(self, x):
        x[0:2:2] = self.value

    def _get_answer(self):
        self.data[0:2:2] = self.value


class TestSetValueItemSliceStep2(TestSetValueApi):
    def set_shape(self):
        self.shape = [7, 5, 5]

    def _call_setitem(self, x):
        x[0:-1:3] = self.value

    def _get_answer(self):
        self.data[0:-1:3] = self.value


class TestSetValueItemSliceStep3(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1, 0:2, ::2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemSliceStep4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:2:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


# 1.2.3 step < 0
class TestSetValueItemSliceNegetiveStep(TestSetValueApi):
    def set_shape(self):
        self.shape = [5, 2]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[5:2:-1] = self.value

    def _get_answer(self):
        self.data[5:2:-1] = self.value


class TestSetValueItemSliceNegetiveStep2(TestSetValueApi):
    def set_shape(self):
        self.shape = [5]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[1::-1] = self.value

    def _get_answer(self):
        self.data[1::-1] = self.value


class TestSetValueItemSliceNegetiveStep3(TestSetValueApi):
    def set_shape(self):
        self.shape = [3]

    def set_value(self):
        self.value = np.array([3, 4, 5])

    def _call_setitem(self, x):
        x[::-1] = self.value

    def _get_answer(self):
        self.data[::-1] = self.value


class TestSetValueItemSliceNegetiveStep4(TestSetValueApi):
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        x[2:0:-1, 0:2, ::-1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


# 1.3 item is Ellipsis


260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
class TestSetValueItemEllipsis1(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, ..., 1:] = self.value

    def _get_answer(self):
        self.data[0:, ..., 1:] = self.value


class TestSetValueItemEllipsis2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, ...] = self.value

    def _get_answer(self):
        self.data[0:, ...] = self.value


class TestSetValueItemEllipsis3(TestSetValueApi):
    def _call_setitem(self, x):
        x[..., 1:] = self.value

    def _get_answer(self):
        self.data[..., 1:] = self.value


class TestSetValueItemEllipsis4(TestSetValueApi):
    def _call_setitem(self, x):
        x[...] = self.value

    def _get_answer(self):
        self.data[...] = self.value


292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
# 1.4 item is Paddle Tensor
class TestSetValueItemTensor(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        x[zero] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueItemTensor2(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:two] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemTensor3(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:-1, 0:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemTensor4(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[0:-1, zero:2, 0:6:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemTensor5(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:, 1:2:two, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


class TestSetValueItemTensor6(TestSetValueApi):
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        minus1 = paddle.full([1], -1, dtype="int32")
        zero = paddle.full([1], 0, dtype="int32")
        x[2:zero:minus1, 0:2, 10:-6:minus1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


Z
zyfncg 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
# 1.5 item is None
class TestSetValueItemNone1(TestSetValueApi):
    def _call_setitem(self, x):
        x[None] = self.value

    def _get_answer(self):
        self.data[None] = self.value


class TestSetValueItemNone2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 1] = self.value


class TestSetValueItemNone3(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, None, None, 1] = self.value

    def _get_answer(self):
        self.data[:, None, None, 1] = self.value


class TestSetValueItemNone4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, 0, None, 1] = self.value


class TestSetValueItemNone5(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, None, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 0, None, 1] = self.value


class TestSetValueItemNone6(TestSetValueApi):
    def _call_setitem(self, x):
        x[None, 0, 0, None, 0] = self.value

    def _get_answer(self):
        self.data[None, 0, 0, None, 0] = self.value


class TestSetValueItemNone7(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, None, 1] = np.zeros(self.shape)[:, None, 0]

    def _get_answer(self):
        self.data[:, None, 1] = np.zeros(self.shape)[:, None, 0]


class TestSetValueItemNone8(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, 1, None] = np.zeros(self.shape)[:, 0, None]

    def _get_answer(self):
        self.data[:, 1, None] = np.zeros(self.shape)[:, 0, None]


class TestSetValueItemNone9(TestSetValueApi):
    def _call_setitem(self, x):
        x[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]

    def _get_answer(self):
        self.data[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]


428 429 430 431 432 433 434 435
class TestSetValueItemNone10(TestSetValueApi):
    def _call_setitem(self, x):
        x[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]

    def _get_answer(self):
        self.data[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]


Z
zyfncg 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
# 1.5 item is list or Tensor of bol
class TestSetValueItemBool1(TestSetValueApi):
    def _call_setitem(self, x):
        x[[True, False]] = self.value

    def _get_answer(self):
        self.data[[True, False]] = self.value


class TestSetValueItemBool2(TestSetValueApi):
    def _call_setitem(self, x):
        x[[False, False]] = self.value

    def _get_answer(self):
        self.data[[False, False]] = self.value


class TestSetValueItemBool3(TestSetValueApi):
    def _call_setitem(self, x):
        x[[False, True]] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[[False, True]] = np.zeros(self.shape[2])


class TestSetValueItemBool4(TestSetValueApi):
    def _call_setitem(self, x):
        idx = paddle.assign(np.array([False, True]))
        x[idx] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[np.array([False, True])] = np.zeros(self.shape[2])


class TestSetValueItemBool5(TestSetValueApi):
    def _call_setitem(self, x):
        idx = paddle.assign(
473 474
            np.array([[False, True, False], [True, True, False]])
        )
Z
zyfncg 已提交
475 476 477
        x[idx] = self.value

    def _get_answer(self):
478 479 480
        self.data[
            np.array([[False, True, False], [True, True, False]])
        ] = self.value
Z
zyfncg 已提交
481 482 483 484 485 486 487 488 489 490 491 492


class TestSetValueItemBool6(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, ...] = 0
        x[x > 0] = self.value

    def _get_answer(self):
        self.data[0, ...] = 0
        self.data[self.data > 0] = self.value


493
# 2. Test different type of value: int, float, numpy.ndarray, Tensor
494
# 2.1 value is int32, int64, float32, float64, bool
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536


def create_test_value_int32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int32(TestSetValueItemInt)
create_test_value_int32(TestSetValueItemSlice)
create_test_value_int32(TestSetValueItemSlice2)
create_test_value_int32(TestSetValueItemSlice3)
create_test_value_int32(TestSetValueItemSlice4)


def create_test_value_int64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int64(TestSetValueItemInt)
create_test_value_int64(TestSetValueItemSlice)
create_test_value_int64(TestSetValueItemSlice2)
create_test_value_int64(TestSetValueItemSlice3)
create_test_value_int64(TestSetValueItemSlice4)


537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
def create_test_value_fp16(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 3.7

        def set_dtype(self):
            self.dtype = "float16"

    cls_name = "{0}_{1}".format(parent.__name__, "Valuefp16")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp16(TestSetValueItemInt)
create_test_value_fp16(TestSetValueItemSlice)
create_test_value_fp16(TestSetValueItemSlice2)
create_test_value_fp16(TestSetValueItemSlice3)
create_test_value_fp16(TestSetValueItemSlice4)


557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
def create_test_value_fp32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 3.3

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp32(TestSetValueItemInt)
create_test_value_fp32(TestSetValueItemSlice)
create_test_value_fp32(TestSetValueItemSlice2)
create_test_value_fp32(TestSetValueItemSlice3)
create_test_value_fp32(TestSetValueItemSlice4)


577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
def create_test_value_fp64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 2.0**127  # float32:[-2^128, 2^128)

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp64(TestSetValueItemInt)
create_test_value_fp64(TestSetValueItemSlice)
create_test_value_fp64(TestSetValueItemSlice2)
create_test_value_fp64(TestSetValueItemSlice3)
create_test_value_fp64(TestSetValueItemSlice4)


597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
def create_test_value_bool(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 0

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_bool(TestSetValueItemInt)
create_test_value_bool(TestSetValueItemSlice)
create_test_value_bool(TestSetValueItemSlice2)
create_test_value_bool(TestSetValueItemSlice3)
create_test_value_bool(TestSetValueItemSlice4)


617
# 2.2 value is numpy.array (int32, int64, float32, float64, bool)
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
def create_test_value_numpy_int32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([5])

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int32(TestSetValueItemInt)
create_test_value_numpy_int32(TestSetValueItemSlice)
create_test_value_numpy_int32(TestSetValueItemSlice2)
create_test_value_numpy_int32(TestSetValueItemSlice3)
create_test_value_numpy_int32(TestSetValueItemSlice4)


def create_test_value_numpy_int64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int64(TestSetValueItemInt)
create_test_value_numpy_int64(TestSetValueItemSlice)
create_test_value_numpy_int64(TestSetValueItemSlice2)
create_test_value_numpy_int64(TestSetValueItemSlice3)
create_test_value_numpy_int64(TestSetValueItemSlice4)


def create_test_value_numpy_fp32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp32(TestSetValueItemInt)
create_test_value_numpy_fp32(TestSetValueItemSlice)
create_test_value_numpy_fp32(TestSetValueItemSlice2)
create_test_value_numpy_fp32(TestSetValueItemSlice3)
create_test_value_numpy_fp32(TestSetValueItemSlice4)


678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
def create_test_value_numpy_fp64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([2**127]).astype("float64")

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp64(TestSetValueItemInt)
create_test_value_numpy_fp64(TestSetValueItemSlice)
create_test_value_numpy_fp64(TestSetValueItemSlice2)
create_test_value_numpy_fp64(TestSetValueItemSlice3)
create_test_value_numpy_fp64(TestSetValueItemSlice4)


698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
def create_test_value_numpy_bool(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([0])

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_bool(TestSetValueItemInt)
create_test_value_numpy_bool(TestSetValueItemSlice)
create_test_value_numpy_bool(TestSetValueItemSlice2)
create_test_value_numpy_bool(TestSetValueItemSlice3)
create_test_value_numpy_bool(TestSetValueItemSlice4)


# 2.3 value is a Paddle Tensor (int32, int64, float32, float64, bool)
def create_test_value_tensor_int32(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "int32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int32(TestSetValueItemInt)
create_test_value_tensor_int32(TestSetValueItemSlice)
create_test_value_tensor_int32(TestSetValueItemSlice2)
create_test_value_tensor_int32(TestSetValueItemSlice3)
create_test_value_tensor_int32(TestSetValueItemSlice4)


def create_test_value_tensor_int64(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "int64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int64(TestSetValueItemInt)
create_test_value_tensor_int64(TestSetValueItemSlice)
create_test_value_tensor_int64(TestSetValueItemSlice2)
create_test_value_tensor_int64(TestSetValueItemSlice3)
create_test_value_tensor_int64(TestSetValueItemSlice4)


def create_test_value_tensor_fp32(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "float32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp32(TestSetValueItemInt)
create_test_value_tensor_fp32(TestSetValueItemSlice)
create_test_value_tensor_fp32(TestSetValueItemSlice2)
create_test_value_tensor_fp32(TestSetValueItemSlice3)
create_test_value_tensor_fp32(TestSetValueItemSlice4)


def create_test_value_tensor_fp64(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "float64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp64(TestSetValueItemInt)
create_test_value_tensor_fp64(TestSetValueItemSlice)
create_test_value_tensor_fp64(TestSetValueItemSlice2)
create_test_value_tensor_fp64(TestSetValueItemSlice3)
create_test_value_tensor_fp64(TestSetValueItemSlice4)


def create_test_value_tensor_bool(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "bool"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=False, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = False

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_bool(TestSetValueItemInt)
create_test_value_tensor_bool(TestSetValueItemSlice)
create_test_value_tensor_bool(TestSetValueItemSlice2)
create_test_value_tensor_bool(TestSetValueItemSlice3)
create_test_value_tensor_bool(TestSetValueItemSlice4)


# 3. Test different shape of value
class TestSetValueValueShape1(TestSetValueApi):
    def set_value(self):
        self.value = np.array([3, 4, 5, 6])  # shape is (4,)

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape2(TestSetValueApi):
    def set_value(self):
        self.value = np.array([[3, 4, 5, 6]])  # shape is (1,4)

    def _call_setitem(self, x):
        x[0:1] = self.value

    def _get_answer(self):
        self.data[0:1] = self.value


class TestSetValueValueShape3(TestSetValueApi):
    def set_value(self):
864 865 866
        self.value = np.array(
            [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]
        )  # shape is (3,4)
867 868 869 870 871 872 873 874 875 876

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape4(TestSetValueApi):
    def set_value(self):
877 878 879 880 881
        self.value = np.array(
            [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]
        ).astype(
            self.dtype
        )  # shape is (3,4)
882 883 884 885 886 887 888 889

    def _call_setitem(self, x):
        x[0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[0] = self.value


890 891 892 893 894 895 896 897 898 899 900 901 902 903
class TestSetValueValueShape5(TestSetValueApi):
    def set_value(self):
        self.value = np.array([3, 3, 3]).astype(self.dtype)

    def set_shape(self):
        self.shape = [3, 4]

    def _call_setitem(self, x):
        x[:, 0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[:, 0] = self.value


904 905 906 907
# 4. Test error
class TestError(TestSetValueBase):
    def _value_type_error(self):
        with self.assertRaisesRegexp(
908 909
            TypeError,
            "Only support to assign an integer, float, numpy.ndarray or paddle.Tensor",
910 911 912 913 914 915 916
        ):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = [1]
            x[0] = value

    def _dtype_error(self):
        with self.assertRaisesRegexp(
917 918
            TypeError,
            "When assign a numpy.ndarray, integer or float to a paddle.Tensor, ",
919
        ):
920
            y = paddle.ones(shape=self.shape, dtype="float16")
921 922 923
            y[0] = 1

    def _step_error(self):
924
        with self.assertRaisesRegexp(ValueError, "step can not be 0"):
925
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
926
            x[0:1:0] = self.value
927

928 929
    def _ellipsis_error(self):
        with self.assertRaisesRegexp(
930 931
            IndexError, "An index can only have a single ellipsis"
        ):
932 933
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[..., ...] = self.value
934 935 936 937
        with self.assertRaisesRegexp(ValueError, "the start or end is None"):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            one = paddle.ones([1])
            x[::one] = self.value
938

Z
zyfncg 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
    def _bool_list_error(self):
        with self.assertRaises(TypeError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False, 0]] = 0

        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False], [True, False]] = 0

    def _bool_tensor_error(self):
        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            idx = paddle.assign([True, False, True])
            x[idx] = 0

954 955 956 957 958 959 960
    def _broadcast_mismatch(self):
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = np.array([3, 4, 5, 6, 7])
            x[0] = value
        exe = paddle.static.Executor(paddle.CPUPlace())
Z
zyfncg 已提交
961
        with self.assertRaises(ValueError):
962 963 964
            exe.run(program)

    def test_error(self):
965
        paddle.enable_static()
966 967 968
        with paddle.static.program_guard(self.program):
            self._value_type_error()
            self._step_error()
Z
zyfncg 已提交
969 970
            self._bool_list_error()
            self._bool_tensor_error()
971 972 973
        self._broadcast_mismatch()


974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
# 5. Test backward


class Model(paddle.nn.Layer):
    def __init__(self):
        super(Model, self).__init__()
        self.conv = paddle.nn.Conv2D(12, 12, 3)

    def forward(self, x, y):
        x = self.conv(x)
        y = self.conv(y)
        var = y.flatten()

        x[0, :, 0, 0] = var
        loss = paddle.mean(x)
        return loss, var, x


class TestBackward(unittest.TestCase):
    def test_static(self):
        paddle.enable_static()
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        x_np = np.random.random(size=(4, 4)).astype('float32')
        y_np = np.random.random(size=(4, 4)).astype('float32')
        label_np = np.random.randint(2, size=(4, 1)).astype('int64')

        with paddle.static.program_guard(main_program, startup_program):
            x = paddle.static.data(name="x", shape=[4, 4], dtype='float32')
            y = paddle.static.data(name="y", shape=[4, 4], dtype='float32')

1006 1007 1008
            label = paddle.static.data(
                name="label", shape=[4, 1], dtype='int64'
            )
1009 1010 1011 1012 1013 1014 1015

            z = paddle.add(x, y)
            var = y[0, :]
            z[0, :] = var

            prediction = paddle.static.nn.fc(x=z, size=2, activation='softmax')

1016 1017 1018
            cost = paddle.nn.functional.cross_entropy(
                input=prediction, label=label
            )
1019 1020 1021 1022 1023 1024 1025 1026 1027
            loss = paddle.mean(cost)
            sgd = paddle.optimizer.SGD(learning_rate=0.01)
            sgd.minimize(loss)

        exe = paddle.static.Executor(paddle.CPUPlace())
        exe.run(startup_program)

        var_grad, z_grad = exe.run(
            main_program,
1028 1029 1030
            feed={"x": x_np, "y": y_np, "label": label_np},
            fetch_list=[var.name + "@GRAD", z.name + "@GRAD"],
        )
1031 1032 1033

        self.assertTrue((var_grad == z_grad[0, :]).all())
        paddle.disable_static()
W
wanghuancoder 已提交
1034 1035

    def func_test_dynamic(self):
1036 1037 1038 1039 1040 1041 1042
        model = Model()
        x = paddle.ones([1, 12, 3, 3]).astype("float32")
        y = paddle.ones([1, 12, 3, 3]).astype("float32")
        loss, var, x = model(x, y)
        loss.backward()

        self.assertTrue(var.grad.shape == x.grad[0, :, 0, 0].shape)
1043
        self.assertTrue((0 == x.grad[0, :, 0, 0]).all())
W
wanghuancoder 已提交
1044 1045

    def test_dynamic(self):
1046
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
W
wanghuancoder 已提交
1047 1048 1049
        with _test_eager_guard():
            self.func_test_dynamic()
        self.func_test_dynamic()
1050
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
1051 1052 1053


class TestGradientTruncated(unittest.TestCase):
W
wanghuancoder 已提交
1054
    def func_test_consistent_with_competitor(self):
1055 1056 1057 1058 1059 1060 1061 1062 1063
        paddle.disable_static()

        def set_value(t, value):
            a = t * t
            a[0, 1] = value
            y = a * a
            return y.sum()

        # case 1
1064 1065 1066
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [1, 2, 1, 3, 1, 4]
        )
1067 1068 1069 1070 1071 1072 1073 1074
        value = np.arange(100, 104, dtype="float32").reshape(1, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps, value)
        loss.backward()

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
        value_grad = np.array([[600.0, 606.0, 612.0, 618.0]])
        input_grad = np.array(
            [
                [
                    [
                        [
                            [[4.0, 32.0, 108.0, 256.0]],
                            [[500.0, 864.0, 1372.0, 2048.0]],
                            [[2916.0, 4000.0, 5324.0, 6912.0]],
                        ]
                    ],
                    [
                        [
                            [[0.0, 0.0, 0.0, 0.0]],
                            [[0.0, 0.0, 0.0, 0.0]],
                            [[0.0, 0.0, 0.0, 0.0]],
                        ]
                    ],
                ]
            ]
        )
1096 1097 1098
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1099 1100 1101 1102
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1103 1104 1105
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1106 1107 1108 1109
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

        # case 2
        array = np.arange(1, 2 * 3 * 4 + 1, dtype="float32").reshape([4, 2, 3])
        value = np.arange(100, 100 + 1, dtype="float32")

        inps2 = paddle.to_tensor(array, stop_gradient=False)
        value2 = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps2, value2)
        loss.backward()

1121 1122 1123 1124 1125 1126 1127 1128 1129
        value_grad2 = np.array([600.0])
        input_grad2 = np.array(
            [
                [[4.0, 32.0, 108.0], [0.0, 0.0, 0.0]],
                [[1372.0, 2048.0, 2916.0], [4000.0, 5324.0, 6912.0]],
                [[8788.0, 10976.0, 13500.0], [16384.0, 19652.0, 23328.0]],
                [[27436.0, 32000.0, 37044.0], [42592.0, 48668.0, 55296.0]],
            ]
        )
1130 1131 1132
        np.testing.assert_array_equal(
            inps2.grad.numpy(),
            input_grad2,
1133 1134 1135 1136
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps2.grad.numpy()
            ),
        )
1137 1138 1139
        np.testing.assert_array_equal(
            value2.grad.numpy(),
            value_grad2,
1140 1141 1142 1143
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value2.grad.numpy()
            ),
        )
1144 1145 1146 1147 1148 1149 1150 1151

        # case 3
        def set_value3(t, value):
            a = t * t
            a[0, :, 0, :] = value
            y = a * a
            return y.sum()

1152 1153 1154
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [4, 3, 1, 1, 2, 1]
        )
1155 1156 1157 1158 1159 1160 1161 1162
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value3(inps, value)
        loss.backward()

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        value_grad = np.array([[[600.0], [606.0]]])
        input_grad = np.array(
            [
                [[[[[0.0], [0.0]]]], [[[[0.0], [0.0]]]], [[[[0.0], [0.0]]]]],
                [
                    [[[[1372.0], [2048.0]]]],
                    [[[[2916.0], [4000.0]]]],
                    [[[[5324.0], [6912.0]]]],
                ],
                [
                    [[[[8788.0], [10976.0]]]],
                    [[[[13500.0], [16384.0]]]],
                    [[[[19652.0], [23328.0]]]],
                ],
                [
                    [[[[27436.0], [32000.0]]]],
                    [[[[37044.0], [42592.0]]]],
                    [[[[48668.0], [55296.0]]]],
                ],
            ]
        )
1184 1185 1186
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1187 1188 1189 1190
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1191 1192 1193
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1194 1195 1196 1197
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1198

1199
        # case 4: step >0
1200 1201 1202 1203 1204 1205
        def set_value4(t, value):
            a = t * t
            a[0, :, 0, ::3] = value
            y = a * a
            return y.sum()

1206 1207 1208
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [2, 3, 1, 4, 1]
        )
1209 1210 1211 1212 1213 1214 1215 1216
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value4(inps, value)
        loss.backward()

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        value_grad = np.array([[[600.0], [606.0]]])
        input_grad = np.array(
            [
                [
                    [[[0.0], [32.0], [108.0], [0.0]]],
                    [[[0.0], [864.0], [1372.0], [0.0]]],
                    [[[0.0], [4000.0], [5324.0], [0.0]]],
                ],
                [
                    [[[8788.0], [10976.0], [13500.0], [16384.0]]],
                    [[[19652.0], [23328.0], [27436.0], [32000.0]]],
                    [[[37044.0], [42592.0], [48668.0], [55296.0]]],
                ],
            ]
        )
1232 1233 1234
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1235 1236 1237 1238
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1239 1240 1241
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1242 1243 1244 1245
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

        # case 5:a[0].shape==value.shape
        def set_value5(t, value):
            a = t * t
            a[0] = value
            y = a * a
            return y.sum()

        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape([2, 3, 4])
        value = np.arange(100, 100 + 12, dtype="float32").reshape(3, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value5(inps, value)
        loss.backward()

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        value_grad = np.array(
            [
                [200.0, 202.0, 204.0, 206.0],
                [208.0, 210.0, 212.0, 214.0],
                [216.0, 218.0, 220.0, 222.0],
            ]
        )
        input_grad = np.array(
            [
                [
                    [0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0],
                ],
                [
                    [8788.0, 10976.0, 13500.0, 16384.0],
                    [19652.0, 23328.0, 27436.0, 32000.0],
                    [37044.0, 42592.0, 48668.0, 55296.0],
                ],
            ]
        )
1284 1285 1286
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1287 1288 1289 1290
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1291 1292 1293
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1294 1295 1296 1297
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307
        # case 6: pass stop_gradient from value to x
        x = paddle.zeros([8, 8], dtype='float32')
        value = paddle.to_tensor([10], dtype='float32', stop_gradient=False)

        self.assertTrue(x.stop_gradient)
        self.assertTrue(x.is_leaf)

        x[0, :] = value

1308 1309
        self.assertTrue(not x.stop_gradient)
        self.assertTrue(not x.is_leaf)
1310

W
wanghuancoder 已提交
1311 1312 1313 1314 1315
    def test_consistent_with_competitor(self):
        with _test_eager_guard():
            self.func_test_consistent_with_competitor()
        self.func_test_consistent_with_competitor()

1316 1317 1318
    def test_static_graph(self):
        paddle.enable_static()

1319
        to_string = lambda x, i,: x + '_' + str(i)
1320 1321 1322 1323
        numel = lambda input_shape: reduce(lambda x, y: x * y, input_shape)

        def op1(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
1324
            # test stop_gradient
1325 1326
            value.stop_gradient = True
            x.stop_gradient = False
1327 1328 1329 1330 1331 1332 1333 1334 1335
            start = paddle.fluid.layers.fill_constant(
                [1], "int32", 5, force_cpu=True
            )
            end = paddle.fluid.layers.fill_constant(
                [1], "int32", 0, force_cpu=True
            )
            step = paddle.fluid.layers.fill_constant(
                [1], "int32", -2, force_cpu=True
            )
1336 1337 1338 1339

            inputs = {
                'Input': x,
                'ValueTensor': value,
1340 1341 1342 1343 1344 1345 1346 1347
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
1348
                ],
1349 1350 1351 1352 1353
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1354 1355 1356 1357 1358 1359
            helper.append_op(
                type="set_value",
                inputs=inputs,
                outputs={'Out': y},
                attrs={'axes': [0]},
            )
1360 1361 1362 1363 1364

            return y, value

        def op2(x):
            value = paddle.fluid.layers.fill_constant([1, 3, 2], "float32", 1)
1365
            # test stop_gradient
1366 1367 1368 1369 1370 1371 1372 1373 1374
            value.stop_gradient = False
            x.stop_gradient = False
            attrs = {
                'axes': [0],
                'starts': [6],
                'ends': [0],
                'steps': [-4],
                'decrease_axes': [],
                'none_axes': [],
1375
                'dtype': paddle.float32,
1376 1377 1378 1379 1380 1381
            }
            inputs = {'Input': x, 'ValueTensor': value}

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1382 1383 1384
            helper.append_op(
                type="set_value", inputs=inputs, outputs={'Out': y}, attrs=attrs
            )
1385 1386 1387 1388 1389 1390 1391

            return y, value

        def op3(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
            x.stop_gradient = True
            value.stop_gradient = False
1392 1393 1394 1395 1396 1397 1398 1399 1400
            start = paddle.fluid.layers.fill_constant(
                [1], "int32", 0, force_cpu=True
            )
            end = paddle.fluid.layers.fill_constant(
                [1], "int32", 5, force_cpu=True
            )
            step = paddle.fluid.layers.fill_constant(
                [1], "int32", 3, force_cpu=True
            )
1401 1402 1403 1404

            inputs = {
                'Input': x,
                'ValueTensor': value,
1405 1406 1407 1408 1409 1410 1411 1412
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
1413
                ],
1414 1415 1416 1417 1418
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1419 1420 1421 1422 1423 1424
            helper.append_op(
                type="set_value",
                inputs=inputs,
                outputs={'Out': y},
                attrs={'axes': [0]},
            )
1425 1426 1427 1428 1429

            return y, value

        def set_value(array, i, op):
            name_x = to_string('x', i)
1430 1431 1432
            x = paddle.static.data(
                name=name_x, shape=array.shape, dtype='float32'
            )
1433

1434 1435
            # set_value_op in __get/setitem__ is an inplace operation.
            # When `input.stop_gradient = True` and `value.stop_gradient = False`,
1436 1437 1438 1439 1440 1441
            # set_value_grad_op will not be run during backward.
            y, value = op(x)
            y2 = y + 1
            loss = paddle.fluid.layers.reduce_sum(y2)
            sgd = paddle.optimizer.Adam()
            sgd.minimize(loss)
1442 1443 1444 1445 1446
            place = (
                paddle.fluid.CPUPlace()
                if not paddle.fluid.core.is_compiled_with_cuda()
                else paddle.fluid.CUDAPlace(0)
            )
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            fetch_list = []
            if not x.stop_gradient:
                fetch_list.append(x.grad_name)
            if not value.stop_gradient:
                fetch_list.append(value.grad_name)
            out = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)
            return out

        input_shape = [7, 6, 5, 4, 3, 2]

1461 1462 1463
        array = np.arange(0, numel(input_shape), dtype="float32").reshape(
            input_shape
        )
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

        for i in range(len(input_shape)):
            program = paddle.static.Program()
            with paddle.static.program_guard(program):
                out1 = set_value(array, i, op1)
                self.assertTrue((out1[0][5:0:-2] == 0).all())

            if len(array.shape) > 2:
                program2 = paddle.static.Program()
                with paddle.static.program_guard(program2):
                    out2 = set_value(array, i, op2)
                    self.assertTrue((out2[0][6:0:-4] == 0).all())

            program3 = paddle.static.Program()
            with paddle.static.program_guard(program3):
                out3 = set_value(array, i, op3)
                self.assertTrue((numel(out1[0][0:5:3].shape) == out3[0]).all())

            array = array[0]
W
wanghuancoder 已提交
1483
        paddle.disable_static()
1484 1485


Z
zyfncg 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
class TestSetValueInplace(unittest.TestCase):
    def test_inplace(self):
        paddle.disable_static()
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b = a[:]
            c = b
            b[paddle.to_tensor(0)] = 1.0

            self.assertTrue(id(b) == id(c))
1498
            np.testing.assert_array_equal(b.numpy(), c.numpy())
Z
zyfncg 已提交
1499 1500 1501 1502 1503
            self.assertEqual(b.inplace_version, 1)

        paddle.enable_static()


1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
class TestSetValueInplaceLeafVar(unittest.TestCase):
    def test_inplace_var_become_leaf_var(self):
        paddle.disable_static()

        a_grad_1, b_grad_1, a_grad_2, b_grad_2 = 0, 1, 2, 3
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            c.sum().backward()
            a_grad_1 = a.grad.numpy()
            b_grad_1 = b.grad.numpy()

        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            d = paddle.zeros((4, 4))
            self.assertTrue(d.stop_gradient)
            d[0, :] = c
            self.assertFalse(d.stop_gradient)
            d[0, :].sum().backward()
            a_grad_2 = a.grad.numpy()
            b_grad_2 = b.grad.numpy()

1535 1536
        np.testing.assert_array_equal(a_grad_1, a_grad_2)
        np.testing.assert_array_equal(b_grad_1, b_grad_2)
1537 1538 1539
        paddle.enable_static()


1540 1541
if __name__ == '__main__':
    unittest.main()