gradient_checker.py 30.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
Jiawei Wang 已提交
14
"""This is the lib for gradient checker unittest."""
15 16 17

import numpy as np
from itertools import product
18
import paddle
19 20 21 22

import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.backward import _append_grad_suffix_, _as_list
23
from paddle.fluid.framework import _test_eager_guard
24

25 26 27 28
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


def _product(t):
    if isinstance(t, int):
        return t
    else:
        return np.product(t)


def dtype_to_np_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return np.float32
    elif dtype == core.VarDesc.VarType.FP64:
        return np.float64
    elif dtype == core.VarDesc.VarType.FP16:
        return np.float16
    else:
        raise ValueError("Not supported data type " + str(dtype))


def _get_item(t, i, np_dtype):
    if np_dtype == np.float16:
        np_t = np.array(t).astype(np.float16)
        np_t = np_t.flatten()
        return np_t[i]
    elif np_dtype == np.float32:
        return t._get_float_element(i)
    elif np_dtype == np.float64:
        return t._get_double_element(i)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))


def _set_item(t, i, e, np_dtype):
    if np_dtype == np.float16:
        np_t = np.array(t).astype(np.float16)
        shape = np_t.shape
        np_t = np_t.flatten()
        np_t[i] = e
68
        np_t = np_t.reshape(shape)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        t.set(np_t, place)
    elif np_dtype == np.float32:
        t._set_float_element(i, e)
    elif np_dtype == np.float64:
        t._set_double_element(i, e)
    else:
        raise ValueError("Not supported data type " + str(np_dtype))


def set_var_in_scope(scope, place, name, value, recursive_seq_len=None):
    t = scope.var(name).get_tensor()
    t.set(value, place)
    if recursive_seq_len:
        t.set_recursive_sequence_lengths(recursive_seq_len)
    return t


Q
qingqing01 已提交
86 87 88 89
def var_to_np_array_in_scope(scope, place, name):
    return np.array(scope.var(name).get_tensor())


90 91 92
def make_jacobian(x, y_size, np_dtype):
    if isinstance(x, fluid.framework.Variable):
        return np.zeros((_product(x.shape), y_size), dtype=np_dtype)
93
    elif isinstance(x, Sequence):
94
        jacobians = list(
95 96 97 98 99
            filter(
                lambda t: t is not None,
                (make_jacobian(item, y_size, np_dtype) for item in x),
            )
        )
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        return jacobians
    else:
        None


def _compute_numerical_jacobian(program, x, y, place, scope, delta):
    """Computes the numeric Jacobian for dy/dx.

    Computes the numeric Jacobian by slightly perturbing the inputs and
    measuring the differences on the output.

    Args:
        program (Program): the network program.
        x (Variable): the input variables.
        y (list[Variable]): the output variables.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        scope (Scope): the scope used to run program.
        delta: the amount of perturbation we give to the input

    Returns:
        A list of 2-D numpy array, the list length is len(y).
        Each 2-D numpy array represents the Jacobian for dy_i/dx.
        It has "x_size" rows and "y_size" columns
        where "x_size" is the number of elements in x and
        "y_size" is the number of elements in each y_i.
    """
    if not isinstance(x, fluid.framework.Variable):
        raise TypeError('x is not Variable')

    # To compute the jacobian, treat x and y as one-dimensional vectors.
    y = _as_list(y)
    exe = fluid.Executor(place)

    def run():
        y_res = exe.run(program, scope=scope, fetch_list=y)
        return [yi.flatten() for yi in y_res]

    x_name = x.name
    x_shape = x.shape
    x_size = _product(x_shape)
    x_t = scope.find_var(x_name).get_tensor()

    np_type = dtype_to_np_dtype(x.dtype)
    jacobian = [make_jacobian(x, _product(yi.shape), np_type) for yi in y]

145
    for i in range(x_size):
146 147 148 149 150 151 152 153 154 155 156
        orig = _get_item(x_t, i, np_type)
        x_pos = orig + delta
        _set_item(x_t, i, x_pos, np_type)
        y_pos = run()

        x_neg = orig - delta
        _set_item(x_t, i, x_neg, np_type)
        y_neg = run()

        _set_item(x_t, i, orig, np_type)

157
        for j in range(len(y)):
158
            jacobian[j][i, :] = (y_pos[j] - y_neg[j]) / delta / 2.0
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

    return jacobian


def _compute_analytical_jacobian(program, x, y, place, scope):
    """Computes the analytical Jacobian for dy/dx.

    Args:
        program (Program): a Program with forward pass.
        x (Variable|list[Variable]): a variable or list of variable
        y (Variable): the target variable.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        scope (Scope): the scope used to run program.

    Returns:
        A list of 2-D numpy array. The list length is len(x).
        Each 2-D numpy array represents the Jacobian for dy/dx_i.
        It has "xi_size" rows and "dy_size" columns
        where "x_size" is the number of elements in x_i and
        "dy_size" is the number of elements in y.
    """
    if not isinstance(y, fluid.framework.Variable):
        raise TypeError('y is not Variable')

    dy_name = _append_grad_suffix_(y.name)

    np_type = dtype_to_np_dtype(y.dtype)
    # create dy Variable in Program
187 188 189
    dy = program.global_block().create_var(
        name=dy_name, shape=y.shape, dtype=np_type, persistable=True
    )
190
    # append backward
191
    dx = fluid.gradients(y, x, dy)
192 193 194 195 196 197 198 199 200 201 202 203

    # init dy tensor in scope
    value = np.zeros(y.shape, dtype=np_type)
    dy_t = set_var_in_scope(scope, place, dy_name, value)

    exe = fluid.Executor(place)

    y_size = _product(y.shape)

    x = _as_list(x)
    jacobian = make_jacobian(x, y_size, np_type)

204 205 206 207 208
    # filter None in dx for DX/DY may be None in kernel
    # only fetch not None dx in exe.run
    filted = [(i, dxi) for i, dxi in enumerate(dx) if dxi is not None]
    filted_idx, filted_dx = zip(*filted)

209
    for i in range(y_size):
210 211
        _set_item(dy_t, i, 1, np_type)

212
        dx_res = exe.run(program, scope=scope, fetch_list=filted_dx)
213

214
        for j in range(len(filted_dx)):
215
            dx_idx = filted_idx[j]
Q
qingqing01 已提交
216
            if dx_res[j] is not None:
217
                jacobian[dx_idx][:, i] = dx_res[j].flatten()
Q
qingqing01 已提交
218
            else:
219 220 221
                jacobian[dx_idx][:, i] = np.zeros(
                    dx[dx_idx].shape, dtype=np_type
                ).flatten()
Q
qingqing01 已提交
222

223 224 225 226 227
        _set_item(dy_t, i, 0, np_type)

    return jacobian


228 229 230 231 232 233 234 235 236 237 238
def grad_check(
    x,
    y,
    x_init=None,
    place=None,
    program=None,
    eps=1e-6,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    """
    Check numerical and analytical gradients for dy/dx.
    Each Jacobian gradients is a 2-D array with shape [xi_size, yi_size].

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    y = _as_list(y)
Q
qingqing01 已提交
267

268 269 270
    for v in x:
        v.stop_gradient = False
        v.persistable = True
271 272 273
    for u in y:
        u.stop_gradient = False
        u.persistable = True
274 275 276 277 278 279 280 281 282 283 284 285 286 287
    if place is None:
        place = fluid.CPUPlace()
    if program is None:
        program = fluid.default_main_program()

    # init variable in strtup program
    scope = fluid.executor.global_scope()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    x_init = _as_list(x_init)
    # init inputs if x_init is not None
    if x_init:
        if len(x_init) != len(x):
288 289 290 291
            raise ValueError(
                'len(x_init) (=%d) is not the same'
                ' as len(x) (= %d)' % (len(x_init), len(x))
            )
292 293 294 295 296 297 298 299 300 301 302 303 304
        # init variable in main program
        for var, arr in zip(x, x_init):
            assert var.shape == arr.shape
        feeds = {k.name: v for k, v in zip(x, x_init)}
        exe.run(program, feed=feeds, scope=scope)

    # [x_idx, y_idx]
    numerical = [
        _compute_numerical_jacobian(program, xi, y, place, scope, eps)
        for xi in x
    ]

    # [y_idx, x_idx]
Q
qingqing01 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    analytical = []
    for yi in y:
        prog = program.clone()

        clone_x = []
        clone_y = None
        for b in prog.blocks:
            if b.has_var(yi.name):
                clone_y = b.var(yi.name)
                break
        for xi in x:
            for b in prog.blocks:
                if b.has_var(xi.name):
                    clone_x.append(b.var(xi.name))
                    break
        analytical.append(
321 322
            _compute_analytical_jacobian(prog, clone_x, clone_y, place, scope)
        )
323

324
    for i, (x_idx, y_idx) in enumerate(
325 326
        product(*[range(len(x)), range(len(y))])
    ):
327 328 329
        a = analytical[y_idx][x_idx]
        n = numerical[x_idx][y_idx]
        if not np.allclose(a, n, rtol, atol):
330 331 332 333 334 335
            msg = (
                'Jacobian mismatch for output %s '
                'with respect to input %s on %s,\n'
                'numerical:%s\nanalytical:%s\n'
                % (y[y_idx].name, x[x_idx].name, str(place), n, a)
            )
336 337 338 339
            return fail_test(msg)
    return True


340 341 342 343 344 345 346 347 348 349 350 351
def double_grad_check(
    x,
    y,
    x_init=None,
    y_grads=None,
    place=None,
    program=None,
    eps=1e-6,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    """
    Check gradients of gradients. This function will append backward to the
    program before second order gradient check.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """
    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
378 379 380
    for u in y:
        u.stop_gradient = False
        u.persistable = True
381 382 383 384 385 386 387

    if program is None:
        program = fluid.default_main_program()

    if y_grads is None:
        scope = fluid.executor.global_scope()
        y_grads = []
Q
qingqing01 已提交
388
        y_grads_init = []
389 390 391
        for yi in y:
            dyi_name = _append_grad_suffix_(yi.name)
            np_type = dtype_to_np_dtype(yi.dtype)
392 393 394
            dy = program.global_block().create_var(
                name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
            )
395 396 397 398
            dy.stop_gradient = False
            v = np.random.random(size=yi.shape).astype(np_type)
            set_var_in_scope(scope, place, dyi_name, v)
            y_grads.append(dy)
Q
qingqing01 已提交
399
            y_grads_init.append(v)
400 401
    else:
        y_grads = _as_list(y_grads)
Q
qingqing01 已提交
402 403 404
        y_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name) for v in y_grads
        ]
405 406

    # append first order grads
407
    target_grads = fluid.gradients(y, x, y_grads)
Q
qingqing01 已提交
408 409 410 411 412 413 414

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init = _as_list(x_init)
    x_init += y_grads_init

415
    grad_check(x, target_grads, x_init, place, program, eps, atol, rtol)
416 417


418
# TODO(jiabin): We currently support only triple grad check here, extend this to support
419 420 421 422
# higher order differenciation later.


# check triple grad and two outputs of the triple Kernel
423 424 425 426 427 428 429 430 431 432 433 434 435
def triple_grad_check(
    x,
    y,
    x_init=None,
    y_grads=None,
    x_grads_grads=None,
    place=None,
    program=None,
    eps=1e-6,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    """
    Check triple gradients. This function will append backward to the
    program before third order gradient check.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y.
        x_grads_grads (numpy.array|list[numpy.array]|None): the gradients with respect to your input.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
        eps (float): perturbation for finite differences.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    Returns:
        True if all differences satisfy numpy.allclose condition.
    """
    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
463 464 465
    for u in y:
        u.stop_gradient = False
        u.persistable = True
466 467 468 469 470 471 472 473 474 475 476

    if program is None:
        program = fluid.default_main_program()

    if y_grads is None:
        scope = fluid.executor.global_scope()
        y_grads = []
        y_grads_init = []
        for yi in y:
            dyi_name = _append_grad_suffix_(yi.name)
            np_type = dtype_to_np_dtype(yi.dtype)
477 478 479
            dy = program.global_block().create_var(
                name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
            )
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
            dy.stop_gradient = False
            v = np.random.random(size=yi.shape).astype(np_type)
            set_var_in_scope(scope, place, dyi_name, v)
            y_grads.append(dy)
            y_grads_init.append(v)
    else:
        y_grads = _as_list(y_grads)
        y_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name) for v in y_grads
        ]

    # append first order grads
    target_grads = fluid.gradients(y, x, y_grads)

    if x_grads_grads is None:
        scope = fluid.executor.global_scope()
        x_grads_grads = []
        x_grads_grads_init = []
        for dxi in target_grads:
            ddxi_name = _append_grad_suffix_(dxi.name)
            np_type = dtype_to_np_dtype(dxi.dtype)
501 502 503
            ddx = program.global_block().create_var(
                name=ddxi_name, shape=dxi.shape, dtype=np_type, persistable=True
            )
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            ddx.stop_gradient = False
            v = np.random.random(size=dxi.shape).astype(np_type)
            set_var_in_scope(scope, place, ddxi_name, v)
            x_grads_grads.append(ddx)
            x_grads_grads_init.append(v)
    else:
        x_grads_grads = _as_list(x_grads_grads)
        x_grads_grads_init = [
            var_to_np_array_in_scope(scope, place, v.name)
            for v in x_grads_grads
        ]
    x += y_grads
    x_init = _as_list(x_init)
    x_init += y_grads_init

519 520 521 522
    # append second order grads
    target_grads_grads = fluid.gradients(target_grads, x, x_grads_grads)

    # filter None in target_grads_grads for Dy/Dx may be None in kernel
523 524 525
    filted = [
        (i, dyi) for i, dyi in enumerate(target_grads_grads) if dyi is not None
    ]
526 527
    filted_idx, filted_target_grads_grads = zip(*filted)

528 529 530 531
    x += x_grads_grads
    x_init += x_grads_grads_init

    # x <=> [x, dout, ddx]
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
    grad_check(
        x=x,
        y=filted_target_grads_grads,
        x_init=x_init,
        place=place,
        program=program,
        eps=eps,
        atol=atol,
        rtol=rtol,
    )


def get_static_double_grad(
    x, y, x_init=None, dy_init=None, place=None, program=None
):
547 548 549 550 551 552 553 554 555
    """
    Get Double Grad result of static graph.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
556 557
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
558 559 560 561
    Returns:
        A list of numpy array that stores second derivative result calulated by static graph.
    """

562 563
    if program is None:
        program = fluid.default_main_program()
564 565
    scope = fluid.executor.global_scope()
    y_grads = []
566
    for i in range(len(y)):
567 568 569
        yi = y[i]
        dyi_name = _append_grad_suffix_(yi.name)
        np_type = dtype_to_np_dtype(yi.dtype)
570 571 572
        dy = program.global_block().create_var(
            name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
        )
573 574 575 576 577 578 579 580 581 582 583
        dy.stop_gradient = False
        set_var_in_scope(scope, place, dyi_name, dy_init[i])
        y_grads.append(dy)

    # append first order grads
    dx = fluid.gradients(y, x, y_grads)

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init += dy_init
584 585 586 587

    # filter None in dx for DX/DY may be None in kernel
    filted_dx = [dxi for dxi in dx if dxi is not None]
    y = filted_dx
588 589 590 591 592 593 594 595

    # check input arguments
    x = _as_list(x)
    y = _as_list(y)

    for v in x:
        v.stop_gradient = False
        v.persistable = True
596 597 598
    for u in y:
        u.stop_gradient = False
        u.persistable = True
599 600 601 602 603 604 605 606 607 608 609 610 611 612
    if place is None:
        place = fluid.CPUPlace()
    if program is None:
        program = fluid.default_main_program()

    # init variable in strtup program
    scope = fluid.executor.global_scope()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    x_init = _as_list(x_init)
    # init inputs if x_init is not None
    if x_init:
        if len(x_init) != len(x):
613 614 615 616
            raise ValueError(
                'len(x_init) (=%d) is not the same'
                ' as len(x) (= %d)' % (len(x_init), len(x))
            )
617 618 619 620 621 622 623 624 625 626 627
        # init variable in main program
        for var, arr in zip(x, x_init):
            assert var.shape == arr.shape
        feeds = {k.name: v for k, v in zip(x, x_init)}
        exe.run(program, feed=feeds, scope=scope)

    dys = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        dy_name = _append_grad_suffix_(yi.name)
        # create dy Variable in Program
628 629 630
        dy = program.global_block().create_var(
            name=dy_name, shape=yi.shape, dtype=np_type, persistable=True
        )
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
        # init dy tensor in scope
        value = np.ones(yi.shape, dtype=np_type)
        dy_t = set_var_in_scope(scope, place, dy_name, value)
        dys.append(dy)

    # append second order backward
    ddx = fluid.gradients(y, x, dys)
    exe = fluid.Executor(place)

    # filter None in dx for DX/DY may be None in kernel
    # only fetch not None dx in exe.run
    filted = [(i, dxi) for i, dxi in enumerate(ddx) if dxi is not None]
    filted_idx, filted_ddx = zip(*filted)
    ddx_res = exe.run(program, scope=scope, fetch_list=filted_ddx)

    return ddx_res


649 650 651
def get_eager_double_grad(
    func, x_init=None, dy_init=None, place=None, return_mid_result=False
):
652 653 654 655 656 657 658
    """
    Get Double Grad result of dygraph.

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
659
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
660
        return_mid_result (bool): A flag that controls the return content.
661
    Returns:
662
        If 'return_mid_result' set True.
663 664
        the second order derivative and the inputs of second order derivative's calculation
        will be returned for higher order derivative's calculation.
665
        If 'return_mid_result' set False.
666
        A list of numpy array that stores second derivative result calulated by dygraph.
667
    """
668 669 670 671
    if isinstance(place, fluid.CPUPlace):
        paddle.set_device("cpu")
    if isinstance(place, fluid.CUDAPlace):
        paddle.set_device("gpu")
672 673 674 675 676 677 678 679 680 681 682 683
    inputs = []
    dys = []
    for x in x_init:
        input_tensor = paddle.to_tensor(x)
        input_tensor.stop_gradient = False
        inputs.append(input_tensor)
    for dy in dy_init:
        dy_tensor = paddle.to_tensor(dy)
        dy_tensor.stop_gradient = False
        dys.append(dy_tensor)
    # calculate first derivative
    outputs = func(inputs)
684 685 686 687 688 689 690
    d_inputs = paddle.grad(
        outputs=outputs,
        inputs=inputs,
        grad_outputs=dys,
        create_graph=True,
        allow_unused=True,
    )
691
    d_inputs = [d_input for d_input in d_inputs if d_input is not None]
692 693 694 695

    # calcluate second derivative
    inputs = inputs + dys
    ddys = []
696 697 698 699 700
    if return_mid_result:
        create_graph = True
    else:
        create_graph = False

701 702 703 704 705
    for d_input in d_inputs:
        d_input.stop_gradient = False
        ddy = paddle.ones(shape=d_input.shape, dtype=d_input.dtype)
        ddy.stop_gradient = False
        ddys.append(ddy)
706

707 708 709 710 711 712 713
    dd_inputs = paddle.grad(
        outputs=d_inputs,
        inputs=inputs,
        grad_outputs=ddys,
        create_graph=create_graph,
        allow_unused=True,
    )
714

715
    if return_mid_result:
716 717 718
        return [
            dd_input for dd_input in dd_inputs if dd_input is not None
        ], inputs + ddys
719
    else:
720 721 722
        return [
            dd_input.numpy() for dd_input in dd_inputs if dd_input is not None
        ]
723 724


725 726 727 728 729 730 731 732 733 734
def double_grad_check_for_dygraph(
    func,
    x,
    y,
    x_init=None,
    place=None,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
735
    """
736 737
    Check second order gradients of dygraph. This function will compare the
    second order gradients of dygraph and second order gradients of static graph
738
    to validate dygraph's correctness
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
763 764 765
    for u in y:
        u.stop_gradient = False
        u.persistable = True
766 767 768 769 770 771 772 773 774 775
    y_grads_init = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        v = np.random.random(size=yi.shape).astype(np_type)
        y_grads_init.append(v)

    x_init = _as_list(x_init)

    paddle.disable_static()
    with _test_eager_guard():
776 777 778
        eager_double_grad = get_eager_double_grad(
            func, x_init, y_grads_init, place
        )
779 780
    paddle.enable_static()

781 782 783
    static_double_grad = get_static_double_grad(
        x, y, x_init, y_grads_init, place
    )
784

785
    if len(static_double_grad) != len(eager_double_grad):
786 787
        msg = (
            "The output grad tensor's number of static graph is different with dygraph, "
788
            "please check the python api unit test used."
789
        )
790 791
        raise RuntimeError(msg)

792
    for i in range(len(static_double_grad)):
793 794 795 796 797 798 799
        if not np.allclose(
            static_double_grad[i], eager_double_grad[i], rtol, atol
        ):
            msg = (
                'Check eager double result fail. Mismatch between static_graph double grad '
                'and eager double grad on %s, the output double grad tensor\'s index is : %d \n'
                'static:%s\n eager:%s\n'
800
                % (str(place), i, static_double_grad[i], eager_double_grad[i])
801
            )
802
            return fail_test(msg)
803 804


805 806 807
def get_static_triple_grad(
    x, y, x_init=None, dy_init=None, place=None, program=None
):
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    """
    Get Triple Grad result of static graph.

    Args:
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for output y.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        program (Program|None): a Program with forward pass.
            If None, use fluid.default_main_program().
    Returns:
        A list of numpy array that stores third derivative result calulated by static graph.
    """
    if program is None:
        program = fluid.default_main_program()
    scope = fluid.executor.global_scope()
    y_grads = []
826
    for i in range(len(y)):
827 828 829
        yi = y[i]
        dyi_name = _append_grad_suffix_(yi.name)
        np_type = dtype_to_np_dtype(yi.dtype)
830 831 832
        dy = program.global_block().create_var(
            name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True
        )
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
        dy.stop_gradient = False
        set_var_in_scope(scope, place, dyi_name, dy_init[i])
        y_grads.append(dy)

    # append first order grads
    dx = fluid.gradients(y, x, y_grads)

    # y_grads are the input of first-order backward,
    # so, they are also the input of second-order backward.
    x += y_grads
    x_init += dy_init
    y = dx

    x_grads_grads_init = []
    for dxi in dx:
        np_type = dtype_to_np_dtype(dxi.dtype)
        value = np.ones(dxi.shape, dtype=np_type)
        x_grads_grads_init.append(value)

852 853 854
    return get_static_double_grad(
        x, y, x_init, dy_init=x_grads_grads_init, place=place, program=program
    )
855 856


857 858 859
def get_eager_triple_grad(
    func, x_init=None, dy_init=None, place=None, return_mid_result=False
):
860 861 862 863 864 865 866
    """
    Get triple Grad result of dygraph.

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output.
867
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
868
        return_mid_result (list[Tensor], list[Tensor]): If set True, the
869 870 871
    Returns:
        A list of numpy array that stores second derivative result calulated by dygraph
    """
872 873 874
    dd_y, dd_x = get_eager_double_grad(
        func, x_init, dy_init, place, return_mid_result=True
    )
875 876 877 878 879 880 881 882

    # calcluate third derivative
    dddys = []
    for dd_yi in dd_y:
        dd_yi.stop_gradient = False
        dddy = paddle.ones(shape=dd_yi.shape, dtype=dd_yi.dtype)
        dddy.stop_gradient = False
        dddys.append(dddy)
883 884 885
    ddd_inputs = paddle.grad(
        outputs=dd_y, inputs=dd_x, grad_outputs=dddys, allow_unused=True
    )
886 887 888
    return [
        ddd_input.numpy() for ddd_input in ddd_inputs if ddd_input is not None
    ]
889 890


891 892 893 894 895 896 897 898 899 900
def triple_grad_check_for_dygraph(
    func,
    x,
    y,
    x_init=None,
    place=None,
    atol=1e-5,
    rtol=1e-3,
    raise_exception=True,
):
901
    """
902 903
    Check third order gradients of dygraph. This function will compare the
    third order gradients of dygraph and third order gradients of static graph
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    to validate dygraph's correctness

    Args:
        func: A wrapped dygraph function that its logic is equal to static program
        x (Variable|list[Variable]): input variables to the program.
        y (Variable|list[Variable]): output variables to the program.
        x_init (numpy.array|list[numpy.array]|None): the init value for input x.
        place (fluid.CPUPlace or fluid.CUDAPlace): the device.
        atol (float): absolute tolerance.
        rtol (float): relative tolerance.
        raise_exception (bool): whether to raise an exception if
            the check fails. Default is True.
    """

    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    # check input arguments
    x = _as_list(x)
    for v in x:
        v.stop_gradient = False
        v.persistable = True
    y = _as_list(y)
929 930 931
    for u in y:
        u.stop_gradient = False
        u.persistable = True
932 933 934 935 936 937 938 939 940 941
    y_grads_init = []
    for yi in y:
        np_type = dtype_to_np_dtype(yi.dtype)
        v = np.random.random(size=yi.shape).astype(np_type)
        y_grads_init.append(v)

    x_init = _as_list(x_init)

    paddle.disable_static()
    with _test_eager_guard():
942 943 944
        eager_triple_grad = get_eager_triple_grad(
            func, x_init, y_grads_init, place
        )
945 946
    paddle.enable_static()

947 948 949
    static_triple_grad = get_static_triple_grad(
        x, y, x_init, y_grads_init, place
    )
950

951
    if len(static_triple_grad) != len(eager_triple_grad):
952 953
        msg = (
            "The output grad tensor's number of static graph is different with dygraph, "
954
            "please check the python api unit test used."
955
        )
956 957
        raise RuntimeError(msg)

958
    for i in range(len(static_triple_grad)):
959 960 961 962 963 964 965
        if not np.allclose(
            static_triple_grad[i], eager_triple_grad[i], rtol, atol
        ):
            msg = (
                'Check eager double result fail. Mismatch between static_graph double grad '
                'and eager double grad on %s, the output double grad tensor\'s index is : %d \n'
                'static:%s\n eager:%s\n'
966
                % (str(place), i, static_triple_grad[i], eager_triple_grad[i])
967
            )
968
            return fail_test(msg)