categorical.py 11.3 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16
import paddle
17
from paddle.distribution import distribution
18
from paddle.fluid.data_feeder import check_type, convert_dtype
19
from paddle.fluid.framework import _non_static_mode
20
from paddle.fluid.layers import ops, tensor
21
from paddle.tensor import multinomial
22 23


24
class Categorical(distribution.Distribution):
25
    r"""
26 27 28
    Categorical distribution is a discrete probability distribution that
    describes the possible results of a random variable that can take on
    one of K possible categories, with the probability of each category
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    separately specified.

    The probability mass function (pmf) is:

    .. math::

        pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}

    In the above equation:

    * :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.

    Args:
        logits(list|tuple|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64.
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distribution import Categorical

            paddle.seed(100) # on CPU device
            x = paddle.rand([6])
            print(x)
            # [0.5535528  0.20714243 0.01162981
            #  0.51577556 0.36369765 0.2609165 ]

            paddle.seed(200) # on CPU device
            y = paddle.rand([6])
            print(y)
            # [0.77663314 0.90824795 0.15685187
            #  0.04279523 0.34468332 0.7955718 ]

            cat = Categorical(x)
            cat2 = Categorical(y)

            paddle.seed(1000) # on CPU device
            cat.sample([2,3])
            # [[0, 0, 5],
            #  [3, 4, 5]]

            cat.entropy()
            # [1.77528]

            cat.kl_divergence(cat2)
            # [0.071952]

            value = paddle.to_tensor([2,1,3])
            cat.probs(value)
            # [0.00608027 0.108298 0.269656]

            cat.log_prob(value)
            # [-5.10271 -2.22287 -1.31061]

    """

    def __init__(self, logits, name=None):
        """
        Args:
            logits(list|tuple|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64.
            name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        """
J
Jiabin Yang 已提交
92
        if not _non_static_mode():
93 94 95 96 97 98
            check_type(
                logits,
                'logits',
                (np.ndarray, tensor.Variable, list, tuple),
                'Categorical',
            )
99 100 101 102 103 104 105 106

        self.name = name if name is not None else 'Categorical'
        self.dtype = 'float32'

        if self._validate_args(logits):
            self.logits = logits
            self.dtype = convert_dtype(logits.dtype)
        else:
107 108 109 110
            if isinstance(logits, np.ndarray) and str(logits.dtype) in [
                'float32',
                'float64',
            ]:
111 112 113 114
                self.dtype = logits.dtype
            self.logits = self._to_tensor(logits)[0]
            if self.dtype != convert_dtype(self.logits.dtype):
                self.logits = tensor.cast(self.logits, dtype=self.dtype)
115 116
        dist_sum = paddle.sum(self.logits, axis=-1, keepdim=True)
        self._prob = self.logits / dist_sum
117 118 119 120 121 122 123 124 125

    def sample(self, shape):
        """Generate samples of the specified shape.

        Args:
            shape (list): Shape of the generated samples.

        Returns:
            Tensor: A tensor with prepended dimensions shape.
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                paddle.seed(1000) # on CPU device
                cat.sample([2,3])
                # [[0, 0, 5],
                #  [3, 4, 5]]

        """
        name = self.name + '_sample'
J
Jiabin Yang 已提交
148
        if not _non_static_mode():
149 150 151 152 153 154 155
            check_type(shape, 'shape', (list), 'sample')

        num_samples = np.prod(np.array(shape))

        logits_shape = list(self.logits.shape)
        if len(logits_shape) > 1:
            sample_shape = shape + logits_shape[:-1]
156
            logits = paddle.reshape(
157 158
                self.logits, [np.prod(logits_shape[:-1]), logits_shape[-1]]
            )
159 160 161 162
        else:
            sample_shape = shape
            logits = self.logits

163 164 165
        sample_index = multinomial(
            self._logits_to_probs(logits), num_samples, True
        )
166 167 168 169 170 171 172 173

        # multinomial sample shape is (logits.shape[:-1], num_samples), need to
        # tanspose to (num_samples, logits.shape[:-1])
        permute = list(range(sample_index.dim()))
        permute.insert(0, permute.pop(-1))
        sample_index = sample_index.transpose(permute)

        return paddle.reshape(sample_index, sample_shape, name=name)
174 175 176 177 178 179 180 181 182

    def kl_divergence(self, other):
        """The KL-divergence between two Categorical distributions.

        Args:
            other (Categorical): instance of Categorical. The data type is float32.

        Returns:
            Tensor: kl-divergence between two Categorical distributions.
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                paddle.seed(200) # on CPU device
                y = paddle.rand([6])
                print(y)
                # [0.77663314 0.90824795 0.15685187
                #  0.04279523 0.34468332 0.7955718 ]

                cat = Categorical(x)
                cat2 = Categorical(y)

                cat.kl_divergence(cat2)
                # [0.071952]

        """
        name = self.name + '_kl_divergence'
J
Jiabin Yang 已提交
210
        if not _non_static_mode():
211 212
            check_type(other, 'other', Categorical, 'kl_divergence')

213
        logits = self.logits - paddle.max(self.logits, axis=-1, keepdim=True)
214
        other_logits = other.logits - paddle.max(
215 216
            other.logits, axis=-1, keepdim=True
        )
217 218
        e_logits = ops.exp(logits)
        other_e_logits = ops.exp(other_logits)
219 220
        z = paddle.sum(e_logits, axis=-1, keepdim=True)
        other_z = paddle.sum(other_e_logits, axis=-1, keepdim=True)
221
        prob = e_logits / z
222
        kl = paddle.sum(
223 224
            prob
            * (logits - paddle.log(z) - other_logits + paddle.log(other_z)),
225 226
            axis=-1,
            keepdim=True,
227 228
            name=name,
        )
229 230 231 232 233 234 235 236

        return kl

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
            Tensor: Shannon entropy of Categorical distribution. The data type is float32.
237

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                cat.entropy()
                # [1.77528]

        """
        name = self.name + '_entropy'
257
        logits = self.logits - paddle.max(self.logits, axis=-1, keepdim=True)
258
        e_logits = ops.exp(logits)
259
        z = paddle.sum(e_logits, axis=-1, keepdim=True)
260 261
        prob = e_logits / z

262 263
        neg_entropy = paddle.sum(prob * (logits - paddle.log(z)), axis=-1)
        entropy = paddle.scale(neg_entropy, scale=-1.0, name=name)
264 265 266 267 268
        return entropy

    def probs(self, value):
        """Probabilities of the given category (``value``).

269
        If ``logits`` is 2-D or higher dimension, the last dimension will be regarded as
270
        category, and the others represents the different distributions.
271
        At the same time, if ``vlaue`` is 1-D Tensor, ``value`` will be broadcast to the
272 273 274 275 276 277 278 279 280
        same number of distributions as ``logits``.
        If ``value`` is not 1-D Tensor, ``value`` should have the same number distributions
        with ``logits. That is, ``value[:-1] = logits[:-1]``.

        Args:
            value (Tensor): The input tensor represents the selected category index.

        Returns:
            Tensor: probability according to the category index.
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                value = paddle.to_tensor([2,1,3])
                cat.probs(value)
                # [0.00608027 0.108298 0.269656]

        """
        name = self.name + '_probs'
302
        if len(self._prob.shape) == 1:  # batch_shape is empty
303 304 305
            return paddle.gather(
                self._prob, value.reshape([-1], name=name), name=name
            ).reshape(value.shape, name=name)
306
        else:
307 308 309
            if len(value.shape) == 1:
                return paddle.take_along_axis(
                    self._prob,
310 311 312 313 314 315 316
                    paddle.reshape(
                        value,
                        (len(self._prob.shape) - 1) * [1] + [-1],
                        name=name,
                    ),
                    axis=-1,
                )
317 318
            else:
                return paddle.take_along_axis(self._prob, value, axis=-1)
319 320 321 322 323 324 325 326 327

    def log_prob(self, value):
        """Log probabilities of the given category. Refer to ``probs`` method.

        Args:
            value (Tensor): The input tensor represents the selected category index.

        Returns:
            Tensor: Log probability.
328

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                value = paddle.to_tensor([2,1,3])
                cat.log_prob(value)
                # [-5.10271 -2.22287 -1.31061]

        """
        name = self.name + '_log_prob'

350
        return paddle.log(self.probs(value), name=name)