categorical.py 11.2 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16
import paddle
17
from paddle.distribution import distribution
18 19 20 21
from paddle.fluid.data_feeder import (check_type, convert_dtype)
from paddle.fluid.framework import _non_static_mode
from paddle.fluid.layers import (ops, tensor)
from paddle.tensor import multinomial
22 23


24
class Categorical(distribution.Distribution):
25
    r"""
26 27 28
    Categorical distribution is a discrete probability distribution that
    describes the possible results of a random variable that can take on
    one of K possible categories, with the probability of each category
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    separately specified.

    The probability mass function (pmf) is:

    .. math::

        pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}

    In the above equation:

    * :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.

    Args:
        logits(list|tuple|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64.
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distribution import Categorical

            paddle.seed(100) # on CPU device
            x = paddle.rand([6])
            print(x)
            # [0.5535528  0.20714243 0.01162981
            #  0.51577556 0.36369765 0.2609165 ]

            paddle.seed(200) # on CPU device
            y = paddle.rand([6])
            print(y)
            # [0.77663314 0.90824795 0.15685187
            #  0.04279523 0.34468332 0.7955718 ]

            cat = Categorical(x)
            cat2 = Categorical(y)

            paddle.seed(1000) # on CPU device
            cat.sample([2,3])
            # [[0, 0, 5],
            #  [3, 4, 5]]

            cat.entropy()
            # [1.77528]

            cat.kl_divergence(cat2)
            # [0.071952]

            value = paddle.to_tensor([2,1,3])
            cat.probs(value)
            # [0.00608027 0.108298 0.269656]

            cat.log_prob(value)
            # [-5.10271 -2.22287 -1.31061]

    """

    def __init__(self, logits, name=None):
        """
        Args:
            logits(list|tuple|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64.
            name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        """
J
Jiabin Yang 已提交
92
        if not _non_static_mode():
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
            check_type(logits, 'logits',
                       (np.ndarray, tensor.Variable, list, tuple),
                       'Categorical')

        self.name = name if name is not None else 'Categorical'
        self.dtype = 'float32'

        if self._validate_args(logits):
            self.logits = logits
            self.dtype = convert_dtype(logits.dtype)
        else:
            if isinstance(logits, np.ndarray) and str(
                    logits.dtype) in ['float32', 'float64']:
                self.dtype = logits.dtype
            self.logits = self._to_tensor(logits)[0]
            if self.dtype != convert_dtype(self.logits.dtype):
                self.logits = tensor.cast(self.logits, dtype=self.dtype)
110 111
        dist_sum = paddle.sum(self.logits, axis=-1, keepdim=True)
        self._prob = self.logits / dist_sum
112 113 114 115 116 117 118 119 120

    def sample(self, shape):
        """Generate samples of the specified shape.

        Args:
            shape (list): Shape of the generated samples.

        Returns:
            Tensor: A tensor with prepended dimensions shape.
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                paddle.seed(1000) # on CPU device
                cat.sample([2,3])
                # [[0, 0, 5],
                #  [3, 4, 5]]

        """
        name = self.name + '_sample'
J
Jiabin Yang 已提交
143
        if not _non_static_mode():
144 145 146 147 148 149 150
            check_type(shape, 'shape', (list), 'sample')

        num_samples = np.prod(np.array(shape))

        logits_shape = list(self.logits.shape)
        if len(logits_shape) > 1:
            sample_shape = shape + logits_shape[:-1]
151 152
            logits = paddle.reshape(
                self.logits, [np.prod(logits_shape[:-1]), logits_shape[-1]])
153 154 155 156
        else:
            sample_shape = shape
            logits = self.logits

157 158
        sample_index = multinomial(self._logits_to_probs(logits), num_samples,
                                   True)
159 160 161 162 163 164 165 166

        # multinomial sample shape is (logits.shape[:-1], num_samples), need to
        # tanspose to (num_samples, logits.shape[:-1])
        permute = list(range(sample_index.dim()))
        permute.insert(0, permute.pop(-1))
        sample_index = sample_index.transpose(permute)

        return paddle.reshape(sample_index, sample_shape, name=name)
167 168 169 170 171 172 173 174 175

    def kl_divergence(self, other):
        """The KL-divergence between two Categorical distributions.

        Args:
            other (Categorical): instance of Categorical. The data type is float32.

        Returns:
            Tensor: kl-divergence between two Categorical distributions.
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                paddle.seed(200) # on CPU device
                y = paddle.rand([6])
                print(y)
                # [0.77663314 0.90824795 0.15685187
                #  0.04279523 0.34468332 0.7955718 ]

                cat = Categorical(x)
                cat2 = Categorical(y)

                cat.kl_divergence(cat2)
                # [0.071952]

        """
        name = self.name + '_kl_divergence'
J
Jiabin Yang 已提交
203
        if not _non_static_mode():
204 205
            check_type(other, 'other', Categorical, 'kl_divergence')

206 207 208 209
        logits = self.logits - \
            paddle.max(self.logits, axis=-1, keepdim=True)
        other_logits = other.logits - paddle.max(
            other.logits, axis=-1, keepdim=True)
210 211
        e_logits = ops.exp(logits)
        other_e_logits = ops.exp(other_logits)
212 213
        z = paddle.sum(e_logits, axis=-1, keepdim=True)
        other_z = paddle.sum(other_e_logits, axis=-1, keepdim=True)
214
        prob = e_logits / z
215 216 217 218 219 220
        kl = paddle.sum(
            prob *
            (logits - paddle.log(z) - other_logits + paddle.log(other_z)),
            axis=-1,
            keepdim=True,
            name=name)
221 222 223 224 225 226 227 228

        return kl

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
            Tensor: Shannon entropy of Categorical distribution. The data type is float32.
229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                cat.entropy()
                # [1.77528]

        """
        name = self.name + '_entropy'
249 250
        logits = self.logits - \
            paddle.max(self.logits, axis=-1, keepdim=True)
251
        e_logits = ops.exp(logits)
252
        z = paddle.sum(e_logits, axis=-1, keepdim=True)
253 254
        prob = e_logits / z

255 256
        neg_entropy = paddle.sum(prob * (logits - paddle.log(z)), axis=-1)
        entropy = paddle.scale(neg_entropy, scale=-1.0, name=name)
257 258 259 260 261
        return entropy

    def probs(self, value):
        """Probabilities of the given category (``value``).

262
        If ``logits`` is 2-D or higher dimension, the last dimension will be regarded as
263
        category, and the others represents the different distributions.
264
        At the same time, if ``vlaue`` is 1-D Tensor, ``value`` will be broadcast to the
265 266 267 268 269 270 271 272 273
        same number of distributions as ``logits``.
        If ``value`` is not 1-D Tensor, ``value`` should have the same number distributions
        with ``logits. That is, ``value[:-1] = logits[:-1]``.

        Args:
            value (Tensor): The input tensor represents the selected category index.

        Returns:
            Tensor: probability according to the category index.
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                value = paddle.to_tensor([2,1,3])
                cat.probs(value)
                # [0.00608027 0.108298 0.269656]

        """
        name = self.name + '_probs'
295
        if len(self._prob.shape) == 1:  # batch_shape is empty
296 297 298
            return paddle.gather(self._prob,
                                 value.reshape([-1], name=name),
                                 name=name).reshape(value.shape, name=name)
299
        else:
300 301 302
            if len(value.shape) == 1:
                return paddle.take_along_axis(
                    self._prob,
303 304 305
                    paddle.reshape(value,
                                   (len(self._prob.shape) - 1) * [1] + [-1],
                                   name=name),
306 307 308
                    axis=-1)
            else:
                return paddle.take_along_axis(self._prob, value, axis=-1)
309 310 311 312 313 314 315 316 317

    def log_prob(self, value):
        """Log probabilities of the given category. Refer to ``probs`` method.

        Args:
            value (Tensor): The input tensor represents the selected category index.

        Returns:
            Tensor: Log probability.
318

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                value = paddle.to_tensor([2,1,3])
                cat.log_prob(value)
                # [-5.10271 -2.22287 -1.31061]

        """
        name = self.name + '_log_prob'

340
        return paddle.log(self.probs(value), name=name)