auto_parallel_fp16.py 31.1 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict

import paddle
from paddle.framework import core
19
from paddle.fluid.framework import default_main_program, default_startup_program
20 21 22
from paddle.fluid import unique_name
from .pass_base import register_pass
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
from paddle.distributed.auto_parallel.utils import (
    set_var_dist_attr,
    naive_set_dist_op_attr_for_program_by_mesh_and_mapping,
)
from paddle.distributed.auto_parallel.process_group import (
    get_world_process_group,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
    AutoMixedPrecisionLists,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
    _keep_layer_norm_scale_bias_to_fp32,
    _need_keep_fp32,
    _valid_types,
    _dtype_to_str,
)
from paddle.distributed.auto_parallel.dist_attribute import (
    OperatorDistributedAttribute,
)
from paddle.distributed.auto_parallel.utils import (
    is_forward_op,
    is_backward_op,
    OP_ROLE_KEY,
    OpRole,
)
48 49 50 51 52 53 54 55 56 57 58 59 60
from .auto_parallel_amp import AMPPass

world_process_group = get_world_process_group()
# if user use python "+, -, * /" for network, there might be cast in vanilla program
__amp_skip_ops__ = [
    'create_py_reader',
    'create_double_buffer_reader',
    'while',
    'cast',
]


def set_op_dtype_to_fp16(op):
61 62 63 64
    if (
        op.has_attr('in_dtype')
        and op.attr('in_dtype') == core.VarDesc.VarType.FP32
    ):
65
        op._set_attr('in_dtype', core.VarDesc.VarType.FP16)
66 67 68 69
    if (
        op.has_attr('out_dtype')
        and op.attr('out_dtype') == core.VarDesc.VarType.FP32
    ):
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
    if op.has_attr('dtype') and op.attr('dtype') == core.VarDesc.VarType.FP32:
        op._set_attr('dtype', core.VarDesc.VarType.FP16)


# adapot for backward op
def _keep_fp32_input(op, in_name):
    op_type = op.type
    if op_type == 'batch_norm':
        # Scale, Bias, Mean, Variance should be float32.
        return in_name != 'X'
    if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
        return in_name != 'X'
    if op_type == 'fused_bn_add_activation':
        return in_name not in {'X', 'Z'}
    if op_type == 'resnet_unit':
        return in_name not in {'X', 'FilterX', 'Z', 'FilterZ'}
    if op_type in ['fused_attention', 'fused_feedforward']:
        return in_name in {
89 90 91 92 93 94
            'LnScale',
            'LnBias',
            'Ln2Scale',
            'Ln2Bias',
            "Ln1Scale",
            "Ln1Bias",
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        }
    # backward
    if op_type in ['batch_norm_grad']:
        return in_name not in {'X', 'Y@GRAD'}
    if op_type in ['layer_norm_grad']:
        return in_name not in {'X', 'Y@GRAD'}
    return False


def _keep_fp32_output(op, out_name):
    op_type = op.type
    if op_type in ['batch_norm', 'fused_bn_add_activation']:
        return out_name != 'Y'
    if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
        return out_name != 'Y'
    if op_type == 'resnet_unit':
        return out_name not in {'Y', 'ConvX', 'ConvZ'}
    if op_type in ['fused_attention', 'fused_feedforward']:
        return out_name in {
114 115 116 117 118 119
            'LnMean',
            'LnVariance',
            'Ln2Mean',
            'Ln2Variance',
            'Ln1Mean',
            'Ln1Variance',
120 121 122 123 124 125 126 127 128 129
        }
    # backward
    if op_type in ['layer_norm_grad']:
        return out_name != 'X@GRAD'
    if op_type in ['batch_norm_grad']:
        return out_name != 'X@GRAD'
    return False


class FP16State(object):
130 131 132 133 134 135 136 137
    def __init__(
        self,
        program,
        amp_list,
        dist_context,
        use_fp16_guard,
        input_data_var_names=None,
    ):
138 139 140 141
        self.program = program
        self.amp_list = amp_list
        self.use_fp16_guard = use_fp16_guard
        self.dist_context = dist_context
142 143 144
        self.grad_op_to_op_map = (
            self.dist_context.dist_op_context.grad_op_id_to_op_id
        )
145 146 147 148
        if input_data_var_names:
            self.input_data_var_names = input_data_var_names
        else:
            self.input_data_var_names = []
149 150 151
        self._op_fp16_dict = (
            {}
        )  # op_id --> True/False. 'True' means that the op is should run in fp16 mode.
152 153 154 155 156 157 158 159 160 161 162 163 164
        # a trick to determine leaf tensor node in program {varname: generator_op_id}
        self.forward_non_leaf_tensors = {}
        # record the cast ops that are inserted for a forward
        self.forward_input_cast_ops = defaultdict(
            list
        )  # {forward_op_id: [(output_name, input_name, out_dtype, in_dtype, slot_name), ]}
        self.is_train = False

    def _is_fp16_op(self, op_id):
        return self._op_fp16_dict.get(op_id, None)

    def _build_state(self):
        """
165
        mark the execution mode (fp16 or fp32) for ops in all blocks
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        include forward ops & backward ops
        """
        # mark op dtype
        # assume all backward block are behind forward blocks
        for block in self.program.blocks:
            for op in block.ops:
                self._mark_op(op)

        # set forward tensor dtype
        for block in self.program.blocks:
            self.resolute_tensor_dtype(block)

        # insert cast ops
        for block in self.program.blocks:
            self.cast_block(block)

        return self.is_train

    def _mark_op(self, op):

        if op.type in __amp_skip_ops__:
            return

        if is_forward_op(op):

            # ernie inference trick
            if op.type == "assign" and "array_" in op.input_arg_names[0]:
193
                self._op_fp16_dict[op.desc.original_id()] = False
194
                return
195 196 197
            if _need_keep_fp32(
                op, self.amp_list.unsupported_list, self.use_fp16_guard
            ):
198
                self._op_fp16_dict[op.desc.original_id()] = False
199
            else:
200
                self._op_fp16_dict[op.desc.original_id()] = True
201 202 203 204 205 206
            for var_name in op.output_arg_names:
                # assert var_name not in self.forward_non_leaf_tensors, "{}".format(var_name)
                self.forward_non_leaf_tensors[var_name] = op.desc.id()

        elif is_backward_op(op) == int(OpRole.Backward):

207 208
            if op.desc.original_id() in self.grad_op_to_op_map:
                fwd_op_id = self.grad_op_to_op_map[op.desc.original_id()]
209
                assert fwd_op_id in self._op_fp16_dict, "{}".format(str(op))
210 211 212
                self._op_fp16_dict[op.desc.original_id()] = self._op_fp16_dict[
                    fwd_op_id
                ]
213 214 215 216 217 218 219 220 221

        if int(op.attr('op_role')) == 257:
            self.is_train = True

    def set_var_to_fp16(self, var_name, block):
        var = None
        try:
            var = block.var(var_name)
        except ValueError as e:
222 223
            var = block._var_recursive(var_name)
            # var = self.program.global_block().var(var_name)
224

225
        # NOTE(JZ-LIANG) "array_" is a hack to adopt for ernie3.0 inference, since there is
226 227 228 229 230 231 232 233 234 235 236 237
        # a trick which make the LOD_TENSOR_ARRAY to the float32 in while block to reset the LOD_TENSOR_ARRAY
        if var is None or var.type not in _valid_types or "array_" in var_name:
            return

        if var.dtype == core.VarDesc.VarType.FP32:
            var.desc.set_dtype(core.VarDesc.VarType.FP16)

    def resolute_tensor_dtype(self, block):

        for op in block.ops:
            if is_forward_op(op):
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
238 239 240 241
                if (
                    self._is_fp16_op(op.desc.original_id()) == True
                    or op.type == "cast"
                ):
242 243 244 245
                    for in_name in op.input_names:
                        if _keep_fp32_input(op, in_name):
                            continue
                        for in_var_name in op.input(in_name):
246 247 248 249
                            if (
                                in_var_name not in self.forward_non_leaf_tensors
                                and in_var_name not in self.input_data_var_names
                            ):
250 251 252 253 254 255 256 257
                                self.set_var_to_fp16(in_var_name, block)
                    for out_name in op.output_names:
                        if _keep_fp32_output(op, out_name):
                            continue
                        for out_var_name in op.output(out_name):
                            self.set_var_to_fp16(out_var_name, block)
                    set_op_dtype_to_fp16(op)
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
258
                elif self._is_fp16_op(op.desc.original_id()) == False:
259 260 261 262 263 264 265
                    for out_var_name in op.output_arg_names:
                        out_var = block.vars.get(out_var_name)
                        if out_var is None or out_var.type not in _valid_types:
                            continue
                        if out_var.dtype == core.VarDesc.VarType.FP16:
                            out_var.desc.set_dtype(core.VarDesc.VarType.FP32)
            elif is_backward_op(op):
266
                if self._is_fp16_op(op.desc.original_id()) == True:
267 268 269 270 271 272 273
                    for out_name in op.output_names:
                        if _keep_fp32_output(op, out_name):
                            continue
                        for out_var_name in op.output(out_name):
                            self.set_var_to_fp16(out_var_name, block)
                    set_op_dtype_to_fp16(op)
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
274
                elif self._is_fp16_op(op.desc.original_id()) == False:
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                    for out_var_name in op.output_arg_names:
                        out_var = block.vars.get(out_var_name)
                        if out_var is None or out_var.type not in _valid_types:
                            continue
                        if out_var.dtype == core.VarDesc.VarType.FP16:
                            out_var.desc.set_dtype(core.VarDesc.VarType.FP32)

    def cast_block(self, block):
        dist_op_context = self.dist_context.dist_op_context
        idx = 0
        while idx < len(block.ops):
            op = block.ops[idx]
            num_cast_ops = 0

            if op.type in __amp_skip_ops__:
                idx += 1
                continue
            elif is_forward_op(op):
293
                if self._is_fp16_op(op.desc.original_id()) == False:
294
                    num_cast_ops = self._insert_forward_cast_ops(
295 296 297 298 299 300 301
                        op,
                        idx,
                        block,
                        core.VarDesc.VarType.FP16,
                        core.VarDesc.VarType.FP32,
                        self.dist_context,
                    )
302
                elif self._is_fp16_op(op.desc.original_id()) == True:
303
                    num_cast_ops = self._insert_forward_cast_ops(
304 305 306 307 308 309 310
                        op,
                        idx,
                        block,
                        core.VarDesc.VarType.FP32,
                        core.VarDesc.VarType.FP16,
                        self.dist_context,
                    )
311
            elif is_backward_op(op):
312 313
                if op.desc.original_id() in dist_op_context.grad_op_id_to_op_id:
                    if self._is_fp16_op(op.desc.original_id()) == False:
314
                        num_cast_ops = self._insert_backward_cast_ops(
315 316 317 318 319 320 321
                            op,
                            idx,
                            block,
                            core.VarDesc.VarType.FP16,
                            core.VarDesc.VarType.FP32,
                            self.dist_context,
                        )
322
                    elif self._is_fp16_op(op.desc.original_id()) == True:
323
                        num_cast_ops = self._insert_backward_cast_ops(
324 325 326 327 328 329 330
                            op,
                            idx,
                            block,
                            core.VarDesc.VarType.FP32,
                            core.VarDesc.VarType.FP16,
                            self.dist_context,
                        )
331 332 333 334 335 336 337
                elif op.type == "sum":
                    # all inputs dtype of sum should be equal and output dtype should follow input
                    out_var_name = op.output_arg_names[0]
                    in_var_name = op.input_arg_names[0]
                    out_var = block.var(out_var_name)
                    in_var = block._find_var_recursive(in_var_name)
                    for in_var_name in op.input_arg_names:
338 339 340 341 342
                        assert (
                            in_var.dtype == block.var(in_var_name).dtype
                        ), "{}, {}, {}".format(
                            in_var, block.var(in_var_name), str(op)
                        )
343 344 345 346 347
                    out_var.desc.set_dtype(in_var.dtype)

            idx += num_cast_ops + 1
        block._sync_with_cpp()

348 349 350
    def _insert_forward_cast_ops(
        self, op, idx, block, src_dtype, dst_dtype, dist_context
    ):
351 352 353 354 355

        num_cast_ops = 0

        for in_name in op.input_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
356 357
                op, in_name
            ):
358 359 360 361 362 363
                continue

            consume_op_attr = dist_context.get_op_dist_attr_for_program(op)
            assert consume_op_attr is not None
            for in_var_name in op.input(in_name):
                in_var = block._find_var_recursive(in_var_name)
364 365 366 367 368
                if (
                    in_var is None
                    or in_var.type not in _valid_types
                    or in_var.dtype == dst_dtype
                ):
369 370 371
                    continue

                if in_var.dtype == src_dtype:
372 373 374
                    cast_name = (
                        in_var.name + '.cast_' + _dtype_to_str(dst_dtype)
                    )
375
                    cast_var = block.vars.get(cast_name)
376 377 378
                    self.forward_input_cast_ops[op.desc.original_id()] += [
                        (cast_name, in_var.name, dst_dtype, src_dtype, in_name)
                    ]
379 380

                    in_var_dist_attr = consume_op_attr.get_input_dist_attr(
381 382
                        in_var.name
                    )
383
                    assert in_var_dist_attr is not None
384
                    # truly insert cast op
385 386 387 388 389 390 391 392 393 394 395
                    if cast_var is None or cast_var.dtype != dst_dtype:
                        # NOTE we make the cast op and var's dist attr as the op that consume the
                        # cast var instead of the op which generates the var
                        # refine op's dist_attr
                        ref_mesh = in_var_dist_attr.process_mesh
                        ref_mapping = in_var_dist_attr.dims_mapping

                        cast_var = block.create_var(
                            name=cast_name,
                            dtype=dst_dtype,
                            persistable=False,
396 397 398 399 400
                            stop_gradient=in_var.stop_gradient,
                        )
                        set_var_dist_attr(
                            dist_context, cast_var, ref_mapping, ref_mesh
                        )
401 402 403 404 405 406 407 408 409

                        cast_op = block._insert_op_without_sync(
                            idx,
                            type="cast",
                            inputs={"X": in_var},
                            outputs={"Out": cast_var},
                            attrs={
                                "in_dtype": in_var.dtype,
                                "out_dtype": cast_var.dtype,
410 411 412
                                OP_ROLE_KEY: OpRole.Forward,
                            },
                        )
413
                        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
414 415
                            cast_op, ref_mesh, ref_mapping, dist_context
                        )
416 417 418
                        num_cast_ops += 1

                    op._rename_input(in_var.name, cast_name)
419 420 421
                    consume_op_attr.set_input_dist_attr(
                        cast_name, in_var_dist_attr
                    )
422 423 424 425 426 427

        if op.has_attr('out_dtype') and op.attr('out_dtype') != -1:
            assert op.attr('out_dtype') == dst_dtype

        return num_cast_ops

428 429 430
    def _insert_backward_cast_ops(
        self, op, idx, block, src_dtype, dst_dtype, dist_context
    ):
431 432 433

        num_cast_ops = 0
        op_id = op.desc.id()
434
        original_id = op.desc.original_id()
435
        dist_op_context = dist_context.dist_op_context
436
        forward_op_id = dist_op_context.grad_op_id_to_op_id[original_id]
437 438 439 440 441 442 443 444 445

        grad_op_attr = dist_context.get_op_dist_attr_for_program(op)
        assert grad_op_attr is not None

        for out_var_name in op.output_arg_names:
            out_var = block.var(out_var_name)
            if _keep_fp32_output(op, out_var.name):
                continue
            assert out_var.dtype == dst_dtype, "{}, {}".format(
446 447
                str(out_var), dst_dtype
            )
448

449 450 451 452 453 454 455
        for (
            cast_name,
            src_name,
            dst_dtype,
            src_dtype,
            slot_name,
        ) in self.forward_input_cast_ops[forward_op_id]:
456

457 458 459 460
            # some forward output is not need by backward computation, e.g. logit in softmax_with_cross_entropy
            if slot_name not in op.input_names:
                continue

461 462
            # rename input
            assert src_name in op.input(
463 464
                slot_name
            ), "var: {} not in op's {}. {}".format(src_name, slot_name, str(op))
465 466 467 468 469 470 471
            src_var_dist_attr = grad_op_attr.get_input_dist_attr(src_name)
            assert src_var_dist_attr is not None
            op._rename_input(src_name, cast_name)
            grad_op_attr.set_input_dist_attr(cast_name, src_var_dist_attr)

            # create cast grad
            grad_slot_name = slot_name + "@GRAD"
472 473 474
            assert (
                grad_slot_name in op.output_names
            ), "[{}], Current Op: {}".format(grad_slot_name, str(op))
475 476

            # some forward input maybe stop_gradient=True, e.g. input_mask
477 478
            if len(op.output(grad_slot_name)) == 0:
                continue
479 480 481
            assert (
                len(op.output(grad_slot_name)) == 1
            ), "[{}], Current Op: {}".format(grad_slot_name, str(op))
482 483 484 485 486 487 488 489
            grad_name = op.output(grad_slot_name)[0]
            grad = block.var(grad_name)
            grad_dist_attr = grad_op_attr.get_output_dist_attr(grad_name)
            assert grad_dist_attr is not None, "{}".format(grad_name)
            ref_mesh = grad_dist_attr.process_mesh
            ref_mapping = grad_dist_attr.dims_mapping

            cast_grad = block.create_var(
490 491 492
                name=unique_name.generate_with_ignorable_key(
                    "".join([cast_name, '@GRAD'])
                ),
493 494 495 496
                dtype=dst_dtype,
                shape=grad.shape,
                type=grad.type,
                persistable=grad.persistable,
497 498
                stop_gradient=grad.stop_gradient,
            )
499
            dist_context.set_tensor_dist_attr_for_program(
500 501
                cast_grad, grad_dist_attr
            )
502 503 504 505 506 507 508 509 510 511 512 513
            op._rename_output(grad_name, cast_grad.name)
            grad_op_attr.set_output_dist_attr(cast_grad.name, grad_dist_attr)

            # add cast
            cast_op = block._insert_op_without_sync(
                idx + 1,
                type="cast",
                inputs={"X": [cast_grad.name]},
                outputs={"Out": [grad.name]},
                attrs={
                    "in_dtype": dst_dtype,
                    "out_dtype": src_dtype,
514 515 516
                    OP_ROLE_KEY: OpRole.Backward,
                },
            )
517 518 519
            grad.desc.set_dtype(src_dtype)

            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
520 521
                cast_op, ref_mesh, ref_mapping, dist_context
            )
522 523 524 525 526 527 528 529 530 531 532 533
            num_cast_ops += 1

        return num_cast_ops


def _check_and_update_gradient(grads, loss_scaling, name, dist_context):

    main_block = paddle.static.default_main_program().global_block()
    main_block._sync_with_cpp()

    check_type(grads, 'x', (tuple, list), 'check_finite_and_unscale')
    for e in grads:
534 535 536 537 538 539
        check_variable_and_dtype(
            e,
            "x",
            ['float16', 'float32', 'float64'],
            'check_finite_and_unscale',
        )
540 541

    found_inf = main_block.create_var(
542 543 544
        name=unique_name.generate_with_ignorable_key(
            ".".join(['find_infinite_scale', name])
        ),
545 546 547 548
        shape=[1],
        dtype='bool',
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
549 550
        stop_gradient=False,
    )
551 552 553 554
    set_var_dist_attr(dist_context, found_inf, [-1], world_process_group.ranks)

    inputs = {'X': grads, 'Scale': loss_scaling}
    outputs = {'Out': grads, 'FoundInfinite': found_inf}
555
    attrs = {'op_role': OpRole.Optimize}
556 557 558 559 560 561
    new_op = main_block.append_op(
        type='check_finite_and_unscale',
        inputs=inputs,
        outputs=outputs,
        attrs=attrs,
    )
562 563 564 565 566 567 568 569 570

    new_op_dist_attr = OperatorDistributedAttribute()
    new_op_dist_attr.process_mesh = world_process_group.ranks
    new_op_dist_attr.impl_idx = 0
    if len(world_process_group.ranks) > 1:
        new_op_dist_attr.impl_type = "check_finite_and_unscale"
    for g in grads:
        g_dist_attr = dist_context.get_tensor_dist_attr_for_program(g)
        assert g_dist_attr is not None
571 572 573 574 575 576
        new_op_dist_attr.set_input_dims_mapping(
            g.name, g_dist_attr.dims_mapping
        )
        new_op_dist_attr.set_output_dims_mapping(
            g.name, g_dist_attr.dims_mapping
        )
577 578 579 580 581 582 583 584
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)
    return grads, found_inf


def _split_grads(params_grads):
    grads = [g for _, g in params_grads]
    fp32_grads = [g for g in grads if g.dtype == core.VarDesc.VarType.FP32]
    fp16_grads = [g for g in grads if g.dtype == core.VarDesc.VarType.FP16]
585 586 587
    assert len(fp32_grads) + len(fp16_grads) == len(
        grads
    ), "Data types of all grads must be either fp16 or fp32."
588 589 590 591 592 593 594 595 596 597 598
    return grads, fp32_grads, fp16_grads


def _set_op_dist_attr_with_ranks(new_op, ranks, block, dist_context):
    new_op_dist_attr = OperatorDistributedAttribute()
    new_op_dist_attr.process_mesh = ranks
    new_op_dist_attr.impl_idx = 0
    for var_name in new_op.input_arg_names:
        var = block.var(var_name)
        var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        assert var_dist_attr is not None
599 600 601
        new_op_dist_attr.set_input_dims_mapping(
            var_name, var_dist_attr.dims_mapping
        )
602 603 604 605
    for var_name in new_op.output_arg_names:
        var = block.var(var_name)
        var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        assert var_dist_attr is not None
606 607 608
        new_op_dist_attr.set_output_dims_mapping(
            var_name, var_dist_attr.dims_mapping
        )
609 610 611
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


612 613 614
def _get_memcopy_idx(block, found_inf_var):
    # use reduce_any op for check_nan_inf as the anchor for now
    for idx, op in enumerate(block.ops):
615 616 617 618
        if (
            op.type == 'reduce_any'
            and op.output_arg_names[0] == found_inf_var.name
        ):
619 620 621
            return idx + 1

    raise RuntimeError(
622 623
        "not found the correct location for memcopy for found_inf_var."
    )
624 625 626 627


def _insert_memcopy(block, idx, src_var, dist_context, direction="D2H"):
    src_name = src_var.name
628 629 630 631 632 633 634 635 636 637
    output_var = block.create_var(
        name=unique_name.generate_with_ignorable_key(
            src_name.join(['memcopy_'])
        ),
        dtype=src_var.dtype,
        shape=src_var.shape,
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=src_var.stop_gradient,
    )
638 639 640 641 642 643 644 645 646 647

    set_var_dist_attr(dist_context, output_var, [-1], world_process_group.ranks)

    # TODO to support CUDAPinned/NPU/XPU Places
    if direction == "D2H":
        dst_place_type = 0
    elif direction == "D2H":
        dst_place_type = 1
    else:
        raise NotImplementedError(
648 649
            "direction [{}] is not supported yet.".format(direction)
        )
650 651

    attrs = {'dst_place_type': dst_place_type}
652 653 654 655 656 657 658 659 660 661
    new_op = block._insert_op_without_sync(
        index=idx,
        type='memcpy',
        inputs={'X': [src_var]},
        outputs={'Out': [output_var]},
        attrs=attrs,
    )
    _set_op_dist_attr_with_ranks(
        new_op, world_process_group.ranks, block, dist_context
    )
662 663 664 665
    block._sync_with_cpp()
    return output_var


666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
def cast_startup_program():
    main_program = default_main_program()
    startup_program = default_startup_program()

    param_to_dtype = {}
    for block in main_program.blocks:
        for p in block.all_parameters():
            param_to_dtype[p.name] = p.dtype

    def is_initialization_op(op):
        comm_op_prefix = "c_"
        op_type = op.type
        if op_type.startswith(comm_op_prefix):
            return False

        if len(op.output_arg_names) != 1 and len(op.input_arg_names) != 0:
            return False

        return True

    for op in startup_program.global_block().ops:
        if is_initialization_op(op):
            output_name = op.output_arg_names[0]
689 690 691 692
            if (
                param_to_dtype.get(output_name, None)
                == core.VarDesc.VarType.FP16
            ):
693 694 695
                assert op.has_attr(
                    'dtype'
                ), "initialization op is supported to has dtype attribute but got {}.".format(
696 697
                    str(op)
                )
698 699 700 701
                if op.attr('dtype') == core.VarDesc.VarType.FP32:
                    op._set_attr('dtype', core.VarDesc.VarType.FP16)


702 703 704 705 706
@register_pass("auto_parallel_fp16")
class FP16Pass(AMPPass):
    def __init__(self):
        super(FP16Pass, self).__init__()

707 708
    # NOTE: why FP16Pass can override apply_single_impl instead of
    # apply_impl? AMP is an optimization pass for serial program,
709 710 711 712 713 714 715
    # in distributed scenario, all ranks should have the same modification.
    def _apply_single_impl(self, main_program, startup_program, context):
        self.dist_context = self.get_attr("dist_context")
        params_grads = self.get_attr("params_grads")

        amp_list = AutoMixedPrecisionLists(
            set(self.get_attr("custom_white_list")),
716 717 718
            set(self.get_attr("custom_black_list")),
            None,
        )
719

720
        # NOTE don't not change input data dtype, since it is controled by dataloader
721 722 723
        # and which is out of control of FP16 Pass
        input_data_var_names = [var.name for var in self.get_attr("input_data")]

724
        with paddle.static.program_guard(main_program, startup_program):
725 726 727 728 729 730 731
            fp16_state = FP16State(
                main_program,
                amp_list,
                self.dist_context,
                self.get_attr("use_fp16_guard"),
                input_data_var_names,
            )
732 733
            is_train = fp16_state._build_state()

734 735
            cast_startup_program()

736 737
        if is_train:
            with paddle.static.program_guard(main_program, startup_program):
738
                # TODO (JZ-LIANG)support cast forward program only when inference
739 740 741 742 743
                self._init_amp_var()
                self._scale_loss()

                grads, fp32_grads, fp16_grads = _split_grads(params_grads)

744 745 746 747
                if (
                    self.get_attr("use_dynamic_loss_scaling")
                    or self.get_attr("init_loss_scaling") != 1.0
                ):
748 749
                    found_infs = []
                    if fp32_grads:
750
                        with main_program._optimized_guard([]):
751
                            _, found_inf_fp32 = _check_and_update_gradient(
752 753 754 755 756
                                fp32_grads,
                                self._loss_scaling,
                                "@fp32",
                                self.dist_context,
                            )
757 758
                        found_infs.append(found_inf_fp32)
                    if fp16_grads:
759
                        with main_program._optimized_guard([]):
760
                            _, found_inf_fp16 = _check_and_update_gradient(
761 762 763 764 765
                                fp16_grads,
                                self._loss_scaling,
                                "@fp16",
                                self.dist_context,
                            )
766
                        found_infs.append(found_inf_fp16)
767
                    with main_program._optimized_guard([]):
768 769 770
                        block = main_program.global_block()

                        all_infs = paddle.fluid.layers.concat(found_infs)
771 772 773 774 775 776
                        set_var_dist_attr(
                            self.dist_context,
                            all_infs,
                            [-1],
                            world_process_group.ranks,
                        )
777 778
                        new_op = block.ops[-1]
                        assert new_op.type == "concat"
779 780 781 782 783 784
                        _set_op_dist_attr_with_ranks(
                            new_op,
                            world_process_group.ranks,
                            block,
                            self.dist_context,
                        )
785 786

                        found_inf = paddle.fluid.layers.reduce_any(all_infs)
787 788 789 790 791 792
                        set_var_dist_attr(
                            self.dist_context,
                            found_inf,
                            [-1],
                            world_process_group.ranks,
                        )
793 794
                        new_op = block.ops[-1]
                        assert new_op.type == "reduce_any"
795 796 797 798 799 800
                        _set_op_dist_attr_with_ranks(
                            new_op,
                            world_process_group.ranks,
                            block,
                            self.dist_context,
                        )
801 802

                if self.get_attr("use_dynamic_loss_scaling"):
803
                    with main_program._optimized_guard([]):
804 805 806 807 808 809 810 811 812 813
                        if fp32_grads:
                            self._update_loss_scaling(fp32_grads, found_inf)
                        if fp16_grads:
                            self._update_loss_scaling(fp16_grads, found_inf)

            # modify optimizer
            base_opt = self.get_attr("base_opt")
            base_opt._multi_precision = True
            if self.get_attr("use_optimizer_fp16"):
                base_opt._multi_precision = False
814
            if isinstance(
815 816
                base_opt, (paddle.fluid.optimizer.Adam, paddle.optimizer.AdamW)
            ):
817 818 819 820
                with main_program._optimized_guard([]):
                    # found_inf = paddle.tensor.creation._memcpy(
                    #     found_inf, paddle.CPUPlace())
                    insert_idx = _get_memcopy_idx(block, found_inf)
821 822 823
                    found_inf = _insert_memcopy(
                        block, insert_idx, found_inf, self.dist_context
                    )
824 825 826
                base_opt._set_auxiliary_var('found_inf', found_inf.name)
            elif hasattr(base_opt, "_set_auxiliary_var"):
                base_opt._set_auxiliary_var('found_inf', found_inf.name)