recompute.py 22.1 KB
Newer Older
J
JZ-LIANG 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
J
JZ-LIANG 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
J
JZ-LIANG 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
J
JZ-LIANG 已提交
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid import core
17 18
from paddle.autograd import PyLayer
from paddle.autograd.py_layer import LegacyPyLayer
S
ShenLiang 已提交
19

J
JZ-LIANG 已提交
20 21
from paddle.fluid import framework
import contextlib
S
ShenLiang 已提交
22
from paddle.fluid.framework import in_dygraph_mode
J
JZ-LIANG 已提交
23

R
Roc 已提交
24
from ..utils.log_util import logger
J
JZ-LIANG 已提交
25

26 27
__all__ = []

J
JZ-LIANG 已提交
28 29 30 31

def detach_variable(inputs):
    out = []
    for inp in inputs:
S
ShenLiang 已提交
32
        if not isinstance(inp, (core.eager.Tensor, core.VarBase)):
J
JZ-LIANG 已提交
33 34 35 36 37 38 39 40 41 42
            out.append(inp)
            continue

        x = inp.detach()
        x.stop_gradient = inp.stop_gradient
        out.append(x)
    return tuple(out)


def check_recompute_necessary(inputs):
43 44 45 46 47
    if not any(
        input_.stop_gradient == False
        for input_ in inputs
        if isinstance(input_, (core.eager.Tensor, paddle.Tensor))
    ):
R
Roc 已提交
48
        logger.warning(
J
JZ-LIANG 已提交
49
            "[Recompute]: None of the inputs to current recompute block need grad, "
50 51
            "therefore there is NO need to recompute this block in backward !"
        )
J
JZ-LIANG 已提交
52 53 54


@contextlib.contextmanager
55
def swith_rng_state_tracker(rng_state, tracker):
56 57 58 59
    from paddle.distributed.fleet.meta_parallel.parallel_layers.random import (
        get_rng_state_tracker,
    )

J
JZ-LIANG 已提交
60
    orig_cuda_rng_state = paddle.get_cuda_rng_state()
61 62
    orig_cuda_rng_tracker = get_rng_state_tracker().get_states_tracker()

J
JZ-LIANG 已提交
63
    paddle.set_cuda_rng_state(rng_state)
64
    get_rng_state_tracker().set_states_tracker(tracker)
J
JZ-LIANG 已提交
65 66 67 68
    try:
        yield
    finally:
        paddle.set_cuda_rng_state(orig_cuda_rng_state)
69
        get_rng_state_tracker().set_states_tracker(orig_cuda_rng_tracker)
J
JZ-LIANG 已提交
70 71


72
class LegacyRecomputeFunction(LegacyPyLayer):
S
ShenLiang 已提交
73 74
    @staticmethod
    def forward(ctx, run_function, preserve_rng_state, *args):
75 76 77
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import (
            get_rng_state_tracker,
        )
S
ShenLiang 已提交
78

79
        # store for recomputing
S
ShenLiang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        ctx.run_function = run_function
        ctx.preserve_rng_state = preserve_rng_state

        # NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
        # the order of tensors in backward()'s output should be the same as tensors in forward()'s input
        # None tensor inputs will be filtered in backward inputs.

        # save input for backward
        ctx.inputs = []
        ctx.tensor_indices = []
        tensor_inputs = []
        for i, arg in enumerate(args):
            if paddle.is_tensor(arg):
                tensor_inputs.append(arg)
                ctx.tensor_indices.append(i)
                ctx.inputs.append(None)
            else:
                ctx.inputs.append(arg)
        ctx.save_for_backward(*tensor_inputs)

        # NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
        # one process with multiple gpu and mix-gpu-cpu senarios are not support
        if ctx.preserve_rng_state:
            cur_device = paddle.get_device()
            if 'gpu:' not in cur_device:
                raise RuntimeError(
106 107 108 109
                    "Recompute with RNG perserve is not support current device: {}.".format(
                        cur_device
                    )
                )
S
ShenLiang 已提交
110
            ctx.fw_cuda_rng_state = paddle.get_cuda_rng_state()
111 112 113
            ctx.fwd_cuda_rng_state_tracker = (
                get_rng_state_tracker().get_states_tracker()
            )
S
ShenLiang 已提交
114 115 116

        # TODO support AMP
        tracer = framework._dygraph_tracer()
117 118 119
        ctx.is_fw_autocast = (
            False if tracer._amp_level == core.AmpLevel.O0 else True
        )
S
ShenLiang 已提交
120 121 122 123 124
        if tracer._amp_level == core.AmpLevel.O2:
            ctx.amp_level = 'O2'
        elif tracer._amp_level in (core.AmpLevel.O1, core.AmpLevel.O0):
            ctx.amp_level = 'O1'
        else:
125 126 127
            raise ValueError(
                "unsupported amp level: {}".format(tracer._amp_level)
            )
S
ShenLiang 已提交
128 129 130 131 132 133

        if tracer._amp_dtype == 'float16':
            ctx.amp_dtype = 'float16'
        elif tracer._amp_dtype in ('bfloat16', 'float32'):
            ctx.amp_dtype = 'bfloat16'
        else:
134 135 136
            raise ValueError(
                "unsupported amp dtype: {}".format(tracer._amp_dtype)
            )
S
ShenLiang 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

        ctx.amp_white_list, ctx.amp_black_list = tracer._get_amp_op_list()

        with paddle.no_grad():
            outputs = run_function(*args)
        return outputs

    @staticmethod
    def backward(ctx, *args):
        with paddle.fluid.dygraph.guard():
            # TODO need to check the recompute calling is vaild or not

            # Restore inputs
            inputs = list(ctx.inputs)
            tensor_indices = ctx.tensor_indices
            tensors = ctx.saved_tensor()
            for i, idx in enumerate(tensor_indices):
                inputs[idx] = tensors[i]

            # paddle.enable_grad()
            tracer = framework._dygraph_tracer()
            tracer._has_grad = True

            # NOTE support AMP
            # need restore auto_cast state as well as w/b list
            if ctx.preserve_rng_state:
163 164 165
                with swith_rng_state_tracker(
                    ctx.fw_cuda_rng_state, ctx.fwd_cuda_rng_state_tracker
                ):
S
ShenLiang 已提交
166
                    with paddle.amp.auto_cast(
167 168 169 170 171 172
                        enable=ctx.is_fw_autocast,
                        custom_white_list=ctx.amp_white_list,
                        custom_black_list=ctx.amp_black_list,
                        level=ctx.amp_level,
                        dtype=ctx.amp_dtype,
                    ):
S
ShenLiang 已提交
173 174 175
                        detached_inputs = detach_variable(tuple(inputs))
                        outputs = ctx.run_function(*detached_inputs)
            else:
176 177 178 179 180 181 182
                with paddle.amp.auto_cast(
                    enable=ctx.is_fw_autocast,
                    custom_white_list=ctx.amp_white_list,
                    custom_black_list=ctx.amp_black_list,
                    level=ctx.amp_level,
                    dtype=ctx.amp_dtype,
                ):
S
ShenLiang 已提交
183 184 185
                    detached_inputs = detach_variable(tuple(inputs))
                    outputs = ctx.run_function(*detached_inputs)

186
            if isinstance(outputs, core.VarBase):
187
                outputs = (outputs,)
S
ShenLiang 已提交
188 189 190 191 192
            assert len(outputs) == len(args)

            # run backward() with only tensor that requires grad
            forward_outputs_with_grad = []
            # NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
193
            # pylayer will force the stop_gradient of attention mask to be False, which will make the number of
S
ShenLiang 已提交
194 195 196 197
            # tensor that need grad does not match.
            # the following backward_inputs_with_grad is used to avoid this case.
            backward_inputs_with_grad = []
            for i in range(len(outputs)):
198 199 200 201
                if (
                    isinstance(outputs[i], core.VarBase)
                    and not outputs[i].stop_gradient
                ):
S
ShenLiang 已提交
202 203 204 205 206 207 208 209 210 211
                    forward_outputs_with_grad.append(outputs[i])
                    backward_inputs_with_grad.append(args[i])

            if len(forward_outputs_with_grad) == 0:
                raise RuntimeError(
                    "none of output has requires_grad=True, this recompute() is not necessary"
                )

            # actually backward
            with paddle.amp.auto_cast(enable=False):
212 213 214
                paddle.autograd.backward(
                    forward_outputs_with_grad, backward_inputs_with_grad
                )
S
ShenLiang 已提交
215

216 217 218 219 220
            grads = list(
                inp._grad_ivar()
                for inp in detached_inputs
                if isinstance(inp, core.VarBase)
            )
S
ShenLiang 已提交
221 222 223
            return grads


J
JZ-LIANG 已提交
224 225
class RecomputeFunction(PyLayer):
    @staticmethod
226
    def forward(ctx, run_function, preserve_rng_state, *args, **kwargs):
227 228 229
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import (
            get_rng_state_tracker,
        )
J
JZ-LIANG 已提交
230

231
        # store for recomputing
J
JZ-LIANG 已提交
232 233
        ctx.run_function = run_function
        ctx.preserve_rng_state = preserve_rng_state
234
        ctx.kwargs = kwargs
J
JZ-LIANG 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

        # NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
        # the order of tensors in backward()'s output should be the same as tensors in forward()'s input
        # None tensor inputs will be filtered in backward inputs.

        # save input for backward
        ctx.inputs = []
        ctx.tensor_indices = []
        tensor_inputs = []
        for i, arg in enumerate(args):
            if paddle.is_tensor(arg):
                tensor_inputs.append(arg)
                ctx.tensor_indices.append(i)
                ctx.inputs.append(None)
            else:
                ctx.inputs.append(arg)
        ctx.save_for_backward(*tensor_inputs)

        # NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
        # one process with multiple gpu and mix-gpu-cpu senarios are not support
        if ctx.preserve_rng_state:
            cur_device = paddle.get_device()
            if 'gpu:' not in cur_device:
                raise RuntimeError(
259 260 261 262
                    "Recompute with RNG perserve is not support current device: {}.".format(
                        cur_device
                    )
                )
J
JZ-LIANG 已提交
263
            ctx.fw_cuda_rng_state = paddle.get_cuda_rng_state()
264 265 266
            ctx.fwd_cuda_rng_state_tracker = (
                get_rng_state_tracker().get_states_tracker()
            )
J
JZ-LIANG 已提交
267 268

        # TODO support AMP
269
        tracer = framework._dygraph_tracer()
270 271 272
        ctx.is_fw_autocast = (
            False if tracer._amp_level == core.AmpLevel.O0 else True
        )
273 274 275 276
        if tracer._amp_level == core.AmpLevel.O2:
            ctx.amp_level = 'O2'
        elif tracer._amp_level in (core.AmpLevel.O1, core.AmpLevel.O0):
            ctx.amp_level = 'O1'
277
        else:
278 279 280
            raise ValueError(
                "unsupported amp level: {}".format(tracer._amp_level)
            )
281 282 283 284 285 286

        if tracer._amp_dtype == 'float16':
            ctx.amp_dtype = 'float16'
        elif tracer._amp_dtype in ('bfloat16', 'float32'):
            ctx.amp_dtype = 'bfloat16'
        else:
287 288 289
            raise ValueError(
                "unsupported amp dtype: {}".format(tracer._amp_dtype)
            )
290

291
        ctx.amp_white_list, ctx.amp_black_list = tracer._get_amp_op_list()
J
JZ-LIANG 已提交
292 293

        with paddle.no_grad():
294
            outputs = run_function(*args, **kwargs)
J
JZ-LIANG 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        return outputs

    @staticmethod
    def backward(ctx, *args):
        with paddle.fluid.dygraph.guard():
            # TODO need to check the recompute calling is vaild or not

            # Restore inputs
            inputs = list(ctx.inputs)
            tensor_indices = ctx.tensor_indices
            tensors = ctx.saved_tensor()
            for i, idx in enumerate(tensor_indices):
                inputs[idx] = tensors[i]

            # paddle.enable_grad()
            tracer = framework._dygraph_tracer()
            tracer._has_grad = True

313 314
            # NOTE support AMP
            # need restore auto_cast state as well as w/b list
J
JZ-LIANG 已提交
315
            if ctx.preserve_rng_state:
316 317 318
                with swith_rng_state_tracker(
                    ctx.fw_cuda_rng_state, ctx.fwd_cuda_rng_state_tracker
                ):
319
                    with paddle.amp.auto_cast(
320 321 322 323 324 325
                        enable=ctx.is_fw_autocast,
                        custom_white_list=ctx.amp_white_list,
                        custom_black_list=ctx.amp_black_list,
                        level=ctx.amp_level,
                        dtype=ctx.amp_dtype,
                    ):
326
                        detached_inputs = detach_variable(tuple(inputs))
327 328 329
                        outputs = ctx.run_function(
                            *detached_inputs, **ctx.kwargs
                        )
330
            else:
331 332 333 334 335 336 337
                with paddle.amp.auto_cast(
                    enable=ctx.is_fw_autocast,
                    custom_white_list=ctx.amp_white_list,
                    custom_black_list=ctx.amp_black_list,
                    level=ctx.amp_level,
                    dtype=ctx.amp_dtype,
                ):
J
JZ-LIANG 已提交
338
                    detached_inputs = detach_variable(tuple(inputs))
339
                    outputs = ctx.run_function(*detached_inputs, **ctx.kwargs)
J
JZ-LIANG 已提交
340

341
            if isinstance(outputs, (core.VarBase, core.eager.Tensor)):
342
                outputs = (outputs,)
J
JZ-LIANG 已提交
343 344 345 346
            assert len(outputs) == len(args)

            # run backward() with only tensor that requires grad
            forward_outputs_with_grad = []
347
            # NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
348
            # pylayer will force the stop_gradient of attention mask to be False, which will make the number of
349 350 351
            # tensor that need grad does not match.
            # the following backward_inputs_with_grad is used to avoid this case.
            backward_inputs_with_grad = []
J
JZ-LIANG 已提交
352
            for i in range(len(outputs)):
353 354 355 356
                if (
                    isinstance(outputs[i], (core.VarBase, core.eager.Tensor))
                    and not outputs[i].stop_gradient
                ):
J
JZ-LIANG 已提交
357
                    forward_outputs_with_grad.append(outputs[i])
358 359
                    backward_inputs_with_grad.append(args[i])

J
JZ-LIANG 已提交
360 361 362 363 364
            if len(forward_outputs_with_grad) == 0:
                raise RuntimeError(
                    "none of output has requires_grad=True, this recompute() is not necessary"
                )

365 366
            # actually backward
            with paddle.amp.auto_cast(enable=False):
367 368 369
                paddle.autograd.backward(
                    forward_outputs_with_grad, backward_inputs_with_grad
                )
J
JZ-LIANG 已提交
370

371 372
            if in_dygraph_mode():
                grads = tuple(
373 374 375 376
                    inp._grad_ivar()
                    for inp in detached_inputs
                    if isinstance(inp, (core.VarBase, core.eager.Tensor))
                )
377 378
            else:
                grads = list(
379 380 381 382
                    inp._grad_ivar()
                    for inp in detached_inputs
                    if isinstance(inp, (core.VarBase, core.eager.Tensor))
                )
J
JZ-LIANG 已提交
383 384 385 386 387 388 389
            return grads


def recompute(function, *args, **kwargs):
    """
    recompute intermediate activations to save then memory.

390
    Parameters:
391
        function(paddle.nn.Layer): layer of sequence of layers that describes part of forward pass of the model
392 393 394 395 396 397
              whose intermediate activations will be released to save memory in forward stage and will be recomputed
              in backward stage for gradient calculation.
        *args(Tensor): inputs to the function.
        **kwargs(Dict): Kwargs should only contain the key-value pair of preserve_rng_state, which is used to
              indicate whether to save the forward rng. If it is True, then the last forward rng value will be
              restored when the forward recalculation of backpropagation is performed. The default
398
              preserve_rng_state is True.
J
JZ-LIANG 已提交
399 400

    Returns:
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        Output of function on args.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed.fleet.utils import recompute
            import random

            # required: gpu

            def get_fc_block(block_idx, input_size, is_last=False):
                block_name = "block_" + str(block_idx)
                block = paddle.nn.Sequential(
                    (block_name + "_fc_0", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
                    (block_name + "_dropout", paddle.nn.Dropout(p=0.5)),
                    (block_name + "_relu_1", paddle.nn.ReLU()),
                    (block_name + "_fc_1", paddle.nn.Linear(input_size, input_size, bias_attr=False)),
                    (block_name + "_relu_2", paddle.nn.ReLU()),
                )
                if is_last:
                    block.add_sublayer(
                        block_name + "_fc_2",
                        paddle.nn.Linear(
                            input_size, 1, bias_attr=False
                        )
                    )
                else:
                    block.add_sublayer(
                        block_name + "_fc_2",
                        paddle.nn.Linear(input_size, input_size, bias_attr=False)
                    )

                return block


            class Naive_fc_net(paddle.nn.Layer):
                def __init__(self, input_size=10,
                            recompute_blocks=[1, 3],
                            recompute_kwargs={}):
                    super(Naive_fc_net, self).__init__()
                    self.recompute_blocks = recompute_blocks
                    self.recompute_kwargs = recompute_kwargs
                    self.runfunc0 = get_fc_block(0, input_size, is_last=False)
                    self.runfunc1 = get_fc_block(1, input_size, is_last=False)
                    self.runfunc2 = get_fc_block(2, input_size, is_last=False)
                    self.runfunc3 = get_fc_block(3, input_size, is_last=False)
                    self.runfunc4 = get_fc_block(4, input_size, is_last=True)
                    self.total_func = [self.runfunc0, self.runfunc1, self.runfunc2, self.runfunc3, self.runfunc4]

                def forward(self, inputs):
                    nums = len(self.total_func)
                    for i in range(nums):
                        if i in self.recompute_blocks:
                            inputs = recompute(self.total_func[i], inputs, **{"preserve_rng_state": True})
                        else:
                            inputs = self.total_func[i](inputs)
                    return inputs

            def run_model(cuda_state, recompute_block=[], recompute_kwargs={}):
                gen = paddle.seed(10)
                gen.manual_seed(10)
                np.random.seed(10)
                random.seed(10)
                if cuda_state:
                    paddle.set_cuda_rng_state(cuda_state)

                batch_size, input_size = 1, 10
                model = Naive_fc_net(
                    input_size,
                    recompute_blocks=recompute_block,
                    recompute_kwargs=recompute_kwargs)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                loss_ = []
                param_ = []
                grad_ = []
                for _ in range(5):
                    x_data = np.random.randn(batch_size, input_size).astype(np.float32)
                    x = paddle.to_tensor(x_data)
                    y_pred = model(x)
                    loss = y_pred.mean()
                    loss_.append(np.asarray(loss).tolist())
                    loss.backward()
                    optimizer.step()
                    param_.append(np.asarray(model.parameters()[9]).tolist())
                    grad_.append(np.asarray(model.parameters()[3]._grad_ivar()).tolist())
                    optimizer.clear_grad()

                return loss_, param_, grad_

            cuda_state = paddle.get_cuda_rng_state()
            # without recompute
            loss_ref, param_ref, grad_ref = run_model(
                cuda_state, recompute_block=[]
            )

            loss, param, grad = run_model(cuda_state, recompute_block=[1, 2])
            print("normal_loss: {}, recompute_loss: {}".format(loss_ref, loss))
            # The result of the recompute_loss should be the same as the normal_loss.

J
JZ-LIANG 已提交
502 503 504 505
    """
    # Hack to mix *args with **kwargs in a python 2.7-compliant way
    preserve = kwargs.pop('preserve_rng_state', True)

506 507 508
    if framework._dygraph_tracer()._has_grad:
        check_recompute_necessary(args)

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    return RecomputeFunction.apply(function, preserve, *args, **kwargs)


def recompute_sequential(ctx, functions, *args, **kwargs):
    """
    recompute intermediate activations to save then memory for 'Sequential' models.

    Parameters:
        ctx(dict): include 'segments' and  'preserve_rng_state' keys, the key 'segments' (int, default 1), represents the number of chunks to create in the model,
                   the key 'preserve_rng_state' (bool, optional, default=True) indicate whether to save the forward rng. If it is True, then the last forward rng value will be
                   restored when the forward recalculation of backpropagation is performed. and some keys such as 'mp_group', 'offload' and 'partition' are invalid here,
                   they are useful in 'recompute_hybrid' API.
        functions(paddle.nn.Sequential): layer of sequence of layers that describes part of forward pass of the model
              whose intermediate activations will be released to save memory in forward stage and will be recomputed
              in backward stage for gradient calculation.
        *args(Tensor): inputs(tuple) to the function.
        **kwargs(Dict): inputs(dict) to the function.

    Returns:
        Output of function on args and kwargs.

    Examples:
        .. code-block:: python

            model = paddle.nn.Sequential(...)
            input = recompute_sequential({'segments' : 1}, model, input)
    """
    segments = ctx.get('segments', 1)
    preserve_rng_state = ctx.get('preserve_rng_state', True)

    def _run_func(begin, end, funcs):
        def do_run(input):
            for i in range(begin, end + 1):
                input = funcs[i](input)
            return input

        return do_run

    if isinstance(functions, paddle.nn.Sequential):
        functions = list(functions.children())

    segment_size = len(functions) // segments

    end = -1
    for begin in range(0, segment_size * (segments - 1), segment_size):
        end = begin + segment_size - 1
555 556 557 558 559 560
        args = recompute(
            _run_func(begin, end, functions),
            *args,
            preserve_rng_state=preserve_rng_state,
            **kwargs
        )
561
    return _run_func(end + 1, len(functions) - 1, functions)(args)