Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
625dd722
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2310
Star
20933
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
625dd722
编写于
4月 04, 2022
作者:
S
ShenLiang
提交者:
GitHub
4月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix recompute (#41396)
上级
a6b6bcbf
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
191 addition
and
67 deletion
+191
-67
python/paddle/distributed/fleet/utils/recompute.py
python/paddle/distributed/fleet/utils/recompute.py
+143
-4
python/paddle/fluid/tests/unittests/test_dygraph_recompute.py
...on/paddle/fluid/tests/unittests/test_dygraph_recompute.py
+48
-63
未找到文件。
python/paddle/distributed/fleet/utils/recompute.py
浏览文件 @
625dd722
...
...
@@ -14,9 +14,11 @@
import
paddle
from
paddle.fluid
import
core
from
paddle.autograd
import
PyLayer
from
paddle.autograd
import
PyLayer
,
EagerPyLayer
from
paddle.fluid
import
framework
import
contextlib
from
paddle.fluid.framework
import
in_dygraph_mode
import
logging
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -32,7 +34,7 @@ __all__ = []
def
detach_variable
(
inputs
):
out
=
[]
for
inp
in
inputs
:
if
not
isinstance
(
inp
,
core
.
VarBase
):
if
not
isinstance
(
inp
,
(
core
.
eager
.
Tensor
,
core
.
VarBase
)
):
out
.
append
(
inp
)
continue
...
...
@@ -44,7 +46,7 @@ def detach_variable(inputs):
def
check_recompute_necessary
(
inputs
):
if
not
any
(
input_
.
stop_gradient
==
False
for
input_
in
inputs
if
isinstance
(
input_
,
paddle
.
Tensor
)):
if
isinstance
(
input_
,
(
core
.
eager
.
Tensor
,
paddle
.
Tensor
)
)):
logger
.
warn
(
"[Recompute]: None of the inputs to current recompute block need grad, "
"therefore there is NO need to recompute this block in backward !"
)
...
...
@@ -60,6 +62,140 @@ def swith_rng_state(rng_state):
paddle
.
set_cuda_rng_state
(
orig_cuda_rng_state
)
class
EagerRecomputeFunction
(
EagerPyLayer
):
@
staticmethod
def
forward
(
ctx
,
run_function
,
preserve_rng_state
,
*
args
):
if
framework
.
_dygraph_tracer
().
_has_grad
:
check_recompute_necessary
(
args
)
# store for recomputing
ctx
.
run_function
=
run_function
ctx
.
preserve_rng_state
=
preserve_rng_state
# NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
# the order of tensors in backward()'s output should be the same as tensors in forward()'s input
# None tensor inputs will be filtered in backward inputs.
# save input for backward
ctx
.
inputs
=
[]
ctx
.
tensor_indices
=
[]
tensor_inputs
=
[]
for
i
,
arg
in
enumerate
(
args
):
if
paddle
.
is_tensor
(
arg
):
tensor_inputs
.
append
(
arg
)
ctx
.
tensor_indices
.
append
(
i
)
ctx
.
inputs
.
append
(
None
)
else
:
ctx
.
inputs
.
append
(
arg
)
ctx
.
save_for_backward
(
*
tensor_inputs
)
# NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
# one process with multiple gpu and mix-gpu-cpu senarios are not support
if
ctx
.
preserve_rng_state
:
cur_device
=
paddle
.
get_device
()
if
'gpu:'
not
in
cur_device
:
raise
RuntimeError
(
"Recompute with RNG perserve is not support current device: {}."
.
format
(
cur_device
))
ctx
.
fw_cuda_rng_state
=
paddle
.
get_cuda_rng_state
()
# TODO support AMP
tracer
=
framework
.
_dygraph_tracer
()
ctx
.
is_fw_autocast
=
False
if
tracer
.
_amp_level
==
core
.
AmpLevel
.
O0
else
True
if
tracer
.
_amp_level
==
core
.
AmpLevel
.
O2
:
ctx
.
amp_level
=
'O2'
elif
tracer
.
_amp_level
in
(
core
.
AmpLevel
.
O1
,
core
.
AmpLevel
.
O0
):
ctx
.
amp_level
=
'O1'
else
:
raise
ValueError
(
"unsupported amp level: {}"
.
format
(
tracer
.
_amp_level
))
if
tracer
.
_amp_dtype
==
'float16'
:
ctx
.
amp_dtype
=
'float16'
elif
tracer
.
_amp_dtype
in
(
'bfloat16'
,
'float32'
):
ctx
.
amp_dtype
=
'bfloat16'
else
:
raise
ValueError
(
"unsupported amp dtype: {}"
.
format
(
tracer
.
_amp_dtype
))
ctx
.
amp_white_list
,
ctx
.
amp_black_list
=
tracer
.
_get_amp_op_list
()
with
paddle
.
no_grad
():
outputs
=
run_function
(
*
args
)
return
outputs
@
staticmethod
def
backward
(
ctx
,
*
args
):
with
paddle
.
fluid
.
dygraph
.
guard
():
# TODO need to check the recompute calling is vaild or not
# Restore inputs
inputs
=
list
(
ctx
.
inputs
)
tensor_indices
=
ctx
.
tensor_indices
tensors
=
ctx
.
saved_tensor
()
for
i
,
idx
in
enumerate
(
tensor_indices
):
inputs
[
idx
]
=
tensors
[
i
]
# paddle.enable_grad()
tracer
=
framework
.
_dygraph_tracer
()
tracer
.
_has_grad
=
True
# NOTE support AMP
# need restore auto_cast state as well as w/b list
if
ctx
.
preserve_rng_state
:
with
swith_rng_state
(
ctx
.
fw_cuda_rng_state
):
with
paddle
.
amp
.
auto_cast
(
enable
=
ctx
.
is_fw_autocast
,
custom_white_list
=
ctx
.
amp_white_list
,
custom_black_list
=
ctx
.
amp_black_list
,
level
=
ctx
.
amp_level
,
dtype
=
ctx
.
amp_dtype
):
detached_inputs
=
detach_variable
(
tuple
(
inputs
))
outputs
=
ctx
.
run_function
(
*
detached_inputs
)
else
:
with
paddle
.
amp
.
auto_cast
(
enable
=
ctx
.
is_fw_autocast
,
custom_white_list
=
ctx
.
amp_white_list
,
custom_black_list
=
ctx
.
amp_black_list
,
level
=
ctx
.
amp_level
,
dtype
=
ctx
.
amp_dtype
):
detached_inputs
=
detach_variable
(
tuple
(
inputs
))
outputs
=
ctx
.
run_function
(
*
detached_inputs
)
if
isinstance
(
outputs
,
core
.
eager
.
Tensor
):
outputs
=
(
outputs
,
)
assert
len
(
outputs
)
==
len
(
args
)
# run backward() with only tensor that requires grad
forward_outputs_with_grad
=
[]
# NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
# pylayer will force the stop_gradient of attention mask to be False, which will make the number of
# tensor that need grad does not match.
# the following backward_inputs_with_grad is used to avoid this case.
backward_inputs_with_grad
=
[]
for
i
in
range
(
len
(
outputs
)):
if
isinstance
(
outputs
[
i
],
core
.
eager
.
Tensor
)
and
not
outputs
[
i
].
stop_gradient
:
forward_outputs_with_grad
.
append
(
outputs
[
i
])
backward_inputs_with_grad
.
append
(
args
[
i
])
if
len
(
forward_outputs_with_grad
)
==
0
:
raise
RuntimeError
(
"none of output has requires_grad=True, this recompute() is not necessary"
)
# actually backward
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
paddle
.
autograd
.
backward
(
forward_outputs_with_grad
,
backward_inputs_with_grad
)
grads
=
tuple
(
inp
.
grad
for
inp
in
detached_inputs
if
isinstance
(
inp
,
core
.
eager
.
Tensor
))
return
grads
class
RecomputeFunction
(
PyLayer
):
@
staticmethod
def
forward
(
ctx
,
run_function
,
preserve_rng_state
,
*
args
):
...
...
@@ -315,4 +451,7 @@ def recompute(function, *args, **kwargs):
raise
ValueError
(
"Unexpected keyword arguments: "
+
","
.
join
(
arg
for
arg
in
kwargs
))
return
RecomputeFunction
.
apply
(
function
,
preserve
,
*
args
)
if
in_dygraph_mode
():
return
EagerRecomputeFunction
.
apply
(
function
,
preserve
,
*
args
)
else
:
return
RecomputeFunction
.
apply
(
function
,
preserve
,
*
args
)
python/paddle/fluid/tests/unittests/test_dygraph_recompute.py
浏览文件 @
625dd722
...
...
@@ -23,6 +23,7 @@ from paddle.distributed.fleet.utils import recompute
import
random
import
paddle.fluid.layers
as
layers
from
paddle.fluid.framework
import
_test_eager_guard
def
get_fc_block
(
block_idx
,
input_size
,
is_last
=
False
):
...
...
@@ -141,96 +142,75 @@ def run_model(recompute_block=[],
class
TestPyLayer
(
unittest
.
TestCase
):
def
test_
fc_net_with_dropout
(
self
):
def
test_
base_case
(
self
,
enable_autocast
=
False
,
pure_fp16
=
False
):
def
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
):
self
.
assertEqual
(
loss_ref
,
loss
)
self
.
assertEqual
(
param_ref
,
param
)
self
.
assertEqual
(
grad_ref
,
grad
)
# without recompute
loss_ref
,
param_ref
,
grad_ref
=
run_model
(
recompute_block
=
[])
# recompute second block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
1
])
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
# recompute fourth block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
3
])
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
# recompute second to fourth block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
1
,
2
,
3
])
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
# recompute second & fourth block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
1
,
3
])
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
def
test_fc_net_without_restore_rng
(
self
):
loss_ref
,
param_ref
,
grad_ref
=
run_model
(
recompute_block
=
[
2
],
recompute_kwargs
=
{
"preserve_rng_state"
:
False
},
enable_autocast
=
True
)
def
test_fc_net_with_amp
(
self
):
def
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
):
self
.
assertEqual
(
loss_ref
,
loss
)
self
.
assertEqual
(
param_ref
,
param
)
self
.
assertEqual
(
grad_ref
,
grad
)
# without recompute
loss_ref
,
param_ref
,
grad_ref
=
run_model
(
recompute_block
=
[],
enable_autocast
=
True
)
recompute_block
=
[],
enable_autocast
=
enable_autocast
,
pure_fp16
=
pure_fp16
)
# recompute second block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
1
],
enable_autocast
=
True
)
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
1
],
enable_autocast
=
enable_autocast
,
pure_fp16
=
pure_fp16
)
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
# recompute fourth block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
3
],
enable_autocast
=
True
)
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
3
],
enable_autocast
=
enable_autocast
,
pure_fp16
=
pure_fp16
)
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
# recompute second to fourth block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
1
,
2
,
3
],
enable_autocast
=
True
)
recompute_block
=
[
1
,
2
,
3
],
enable_autocast
=
enable_autocast
,
pure_fp16
=
pure_fp16
)
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
# recompute second & fourth block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
1
,
3
],
enable_autocast
=
True
)
recompute_block
=
[
1
,
3
],
enable_autocast
=
enable_autocast
,
pure_fp16
=
pure_fp16
)
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
def
test_fc_net_with_fp16
(
self
):
def
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
):
self
.
assertEqual
(
loss_ref
,
loss
)
self
.
assertEqual
(
param_ref
,
param
)
self
.
assertEqual
(
grad_ref
,
grad
)
# without recompute
loss_ref
,
param_ref
,
grad_ref
=
run_model
(
recompute_block
=
[],
enable_autocast
=
True
,
pure_fp16
=
True
)
# recompute second block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
1
],
enable_autocast
=
True
,
pure_fp16
=
True
)
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
def
test_fc_net_with_dropout
(
self
):
with
_test_eager_guard
():
self
.
test_base_case
()
self
.
test_base_case
()
# recompute fourth block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
3
],
enable_autocast
=
True
,
pure_fp16
=
True
)
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
def
test_fc_net_without_restore_rng
(
self
):
with
_test_eager_guard
():
loss_ref
,
param_ref
,
grad_ref
=
run_model
(
recompute_block
=
[
2
],
recompute_kwargs
=
{
"preserve_rng_state"
:
False
},
enable_autocast
=
True
)
# recompute second to fourth block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
1
,
2
,
3
],
enable_autocast
=
True
,
pure_fp16
=
True
)
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
def
test_fc_net_with_amp
(
self
):
with
_test_eager_guard
():
self
.
test_base_case
(
enable_autocast
=
True
)
self
.
test_base_case
(
enable_autocast
=
True
)
# recompute second & fourth block
loss
,
param
,
grad
=
run_model
(
recompute_block
=
[
1
,
3
],
enable_autocast
=
True
,
pure_fp16
=
True
)
check_identical
(
loss_ref
,
param_ref
,
grad_ref
,
loss
,
param
,
grad
)
def
test_fc_net_with_fp16
(
self
):
with
_test_eager_guard
():
self
.
test_base_case
(
enable_autocast
=
True
,
pure_fp16
=
True
)
self
.
test_base_case
(
enable_autocast
=
True
,
pure_fp16
=
True
)
def
test_recompute_kwargs
(
self
):
with
_test_eager_guard
():
paddle
.
set_device
(
"gpu"
)
kwargs
=
{
"is_test"
:
False
}
with
self
.
assertRaises
(
ValueError
):
loss_ref
,
param_ref
,
grad_ref
=
run_model
(
recompute_block
=
[
2
],
recompute_kwargs
=
kwargs
)
paddle
.
set_device
(
"gpu"
)
kwargs
=
{
"is_test"
:
False
}
with
self
.
assertRaises
(
ValueError
):
...
...
@@ -238,6 +218,11 @@ class TestPyLayer(unittest.TestCase):
recompute_block
=
[
2
],
recompute_kwargs
=
kwargs
)
def
test_recompute_cpu_rng
(
self
):
with
_test_eager_guard
():
paddle
.
set_device
(
"cpu"
)
with
self
.
assertRaises
(
RuntimeError
):
loss_ref
,
param_ref
,
grad_ref
=
run_model
(
recompute_block
=
[
2
])
paddle
.
set_device
(
"cpu"
)
with
self
.
assertRaises
(
RuntimeError
):
loss_ref
,
param_ref
,
grad_ref
=
run_model
(
recompute_block
=
[
2
])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录