test_sum_op.py 20.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
18
import unittest
19
import tempfile
20 21
import numpy as np
from op_test import OpTest
22
import paddle
23
from paddle import enable_static
24
import paddle.fluid as fluid
T
tangwei12 已提交
25 26
import paddle.fluid.core as core
from paddle.fluid.op import Operator
27 28 29
from paddle.fluid.tests.unittests.op_test import (OpTest,
                                                  convert_float_to_uint16,
                                                  convert_uint16_to_float)
30
from paddle import _C_ops, _legacy_C_ops
31
from paddle.fluid.framework import _test_eager_guard
32
import paddle.inference as paddle_infer
33 34 35


class TestSumOp(OpTest):
36

37 38
    def setUp(self):
        self.op_type = "sum"
C
chengduo 已提交
39
        self.init_kernel_type()
40 41
        self.use_mkldnn = False
        self.init_kernel_type()
Z
zhupengyang 已提交
42 43 44
        x0 = np.random.random((3, 40)).astype(self.dtype)
        x1 = np.random.random((3, 40)).astype(self.dtype)
        x2 = np.random.random((3, 40)).astype(self.dtype)
45
        self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
46 47
        y = x0 + x1 + x2
        self.outputs = {'Out': y}
48
        self.attrs = {'use_mkldnn': self.use_mkldnn}
49

C
chengduo 已提交
50
    def init_kernel_type(self):
51
        self.dtype = np.float64
C
chengduo 已提交
52

53
    def test_check_output(self):
Q
qijun 已提交
54
        self.check_output()
55 56

    def test_check_grad(self):
Q
qijun 已提交
57
        self.check_grad(['x0'], 'Out')
58 59


60
class TestSelectedRowsSumOp(unittest.TestCase):
61

C
chengduo 已提交
62
    def setUp(self):
Q
qiaolongfei 已提交
63 64 65
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
66
        self.dtype = np.float64
C
chengduo 已提交
67
        self.init_kernel_type()
Q
qiaolongfei 已提交
68

C
chengduo 已提交
69
    def check_with_place(self, place, inplace):
Q
Qiao Longfei 已提交
70 71 72 73 74 75 76 77
        self.check_input_and_optput(core.Scope(), place, inplace, True, True,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, True,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, False,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, False,
                                    False)
T
tangwei12 已提交
78

C
chengduo 已提交
79
    def init_kernel_type(self):
C
chengduo 已提交
80
        pass
C
chengduo 已提交
81

C
chengduo 已提交
82 83 84 85
    def _get_array(self, rows, row_numel):
        array = np.ones((len(rows), row_numel)).astype(self.dtype)
        for i in range(len(rows)):
            array[i] *= rows[i]
Q
qiaolongfei 已提交
86 87
        return array

T
tangwei12 已提交
88 89 90
    def check_input_and_optput(self,
                               scope,
                               place,
Q
Qiao Longfei 已提交
91
                               inplace,
T
tangwei12 已提交
92 93 94 95 96 97 98
                               w1_has_data=False,
                               w2_has_data=False,
                               w3_has_data=False):

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)
T
tangwei12 已提交
99 100

        # create Out Variable
Q
Qiao Longfei 已提交
101 102 103 104 105
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()
T
tangwei12 已提交
106 107

        # create and run sum operator
Q
Qiao Longfei 已提交
108
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
T
tangwei12 已提交
109 110
        sum_op.run(scope, place)

T
tangwei12 已提交
111
        has_data_w_num = 0
Q
qiaolongfei 已提交
112 113
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
T
tangwei12 已提交
114
                has_data_w_num += 1
T
tangwei12 已提交
115

Q
qiaolongfei 已提交
116 117
        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
118 119 120
            np.testing.assert_array_equal(
                np.array(out.get_tensor()),
                self._get_array(self.rows, self.row_numel) * has_data_w_num)
Q
qiaolongfei 已提交
121 122
        else:
            self.assertEqual(len(out.rows()), 0)
T
tangwei12 已提交
123

Q
qiaolongfei 已提交
124
    def create_selected_rows(self, scope, place, var_name, has_data):
T
tangwei12 已提交
125
        # create and initialize W Variable
Q
qiaolongfei 已提交
126 127
        if has_data:
            rows = self.rows
T
tangwei12 已提交
128 129 130 131 132
        else:
            rows = []

        var = scope.var(var_name)
        w_selected_rows = var.get_selected_rows()
Q
qiaolongfei 已提交
133
        w_selected_rows.set_height(self.height)
T
tangwei12 已提交
134
        w_selected_rows.set_rows(rows)
C
chengduo 已提交
135
        w_array = self._get_array(self.rows, self.row_numel)
T
tangwei12 已提交
136 137 138 139 140 141 142
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        return var

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
Q
Qiao Longfei 已提交
143 144
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
T
tangwei12 已提交
145
        for place in places:
Q
Qiao Longfei 已提交
146 147
            for inplace in [True, False]:
                self.check_with_place(place, inplace)
T
tangwei12 已提交
148 149


150
class TestSelectedRowsSumOpInt(TestSelectedRowsSumOp):
151

152 153 154 155 156 157 158
    def init_kernel_type(self):
        self.dtype = np.int32


@unittest.skipIf(not core.supports_bfloat16(),
                 'place does not support BF16 evaluation')
class TestSelectedRowsSumBF16Op(TestSelectedRowsSumOp):
159

160 161 162 163 164 165 166
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
        self.dtype = np.uint16
        self.init_kernel_type()
        np.random.seed(12345)
167 168
        self.data = np.random.random(
            (len(self.rows), self.row_numel)).astype(np.float32)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

    def _get_array(self, rows, row_numel):
        if len(rows) > 0:
            return convert_float_to_uint16(self.data)
        else:
            return np.ndarray((0, row_numel), dtype=self.dtype)

    def check_input_and_optput(self,
                               scope,
                               place,
                               inplace,
                               w1_has_data=False,
                               w2_has_data=False,
                               w3_has_data=False):

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)

        # create Out Variable
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()

        # create and run sum operator
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
        sum_op.run(scope, place)

        has_data_w_num = 0
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
                has_data_w_num += 1

        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
            out_bf16 = np.array(out.get_tensor())
            out_fp32 = convert_uint16_to_float(out_bf16)
            ref_fp32 = convert_uint16_to_float(
                self._get_array(self.rows, self.row_numel)) * has_data_w_num
            np.testing.assert_allclose(out_fp32, ref_fp32, atol=0, rtol=0.95e-2)
        else:
            self.assertEqual(len(out.rows()), 0)

    def test_w_is_selected_rows(self):
        for inplace in [True, False]:
            self.check_with_place(core.CPUPlace(), inplace)


L
lidanqing 已提交
219
class TestSelectedRowsSumBF16OpBigRow(TestSelectedRowsSumBF16Op):
220

L
lidanqing 已提交
221 222 223 224
    def init_kernel_type(self):
        self.row_numel = 102


C
chengduo 已提交
225
class TestLoDTensorAndSelectedRowsOp(TestSelectedRowsSumOp):
226

C
chengduo 已提交
227 228 229 230
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 2, 4, 5, 6]
231
        self.dtype = np.float64
C
chengduo 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

    def check_with_place(self, place, inplace):
        scope = core.Scope()
        if inplace:
            self.create_lod_tensor(scope, place, "x1")
            self.create_selected_rows(scope, place, "x2", True)
            out = scope.var("x1").get_tensor()
            out_name = "x1"
        else:
            self.create_selected_rows(scope, place, "x1", True)
            self.create_lod_tensor(scope, place, "x2")
            out = scope.var("out").get_tensor()
            out_name = "out"

        # create and run sum operator
        sum_op = Operator("sum", X=["x1", "x2"], Out=out_name)
        sum_op.run(scope, place)

        result = np.ones((1, self.height)).astype(np.int32).tolist()[0]
        for ele in self.rows:
            result[ele] += 1

        out_t = np.array(out)
        self.assertEqual(out_t.shape[0], self.height)
256 257 258 259
        np.testing.assert_array_equal(
            out_t,
            self._get_array([i for i in range(self.height)], self.row_numel) *
            np.tile(np.array(result).reshape(self.height, 1), self.row_numel))
C
chengduo 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272

    def create_lod_tensor(self, scope, place, var_name):
        var = scope.var(var_name)
        w_tensor = var.get_tensor()
        w_array = self._get_array([i for i in range(self.height)],
                                  self.row_numel)
        w_tensor.set(w_array, place)
        return var


#----------- test fp16 -----------
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
chengduo 已提交
273
class TestFP16SumOp(TestSumOp):
274

C
chengduo 已提交
275 276 277 278
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
C
chengduo 已提交
279 280 281
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-2)
C
chengduo 已提交
282 283 284 285

    # FIXME: Because of the precision fp16, max_relative_error
    # should be 0.15 here.
    def test_check_grad(self):
C
chengduo 已提交
286 287 288
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad(['x0'], 'Out', max_relative_error=0.15)
C
chengduo 已提交
289 290


C
chengduo 已提交
291
def create_test_sum_fp16_class(parent):
292

C
chengduo 已提交
293 294 295
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestSumFp16Case(parent):
296

C
chengduo 已提交
297 298
        def init_kernel_type(self):
            self.dtype = np.float16
C
chengduo 已提交
299

C
chengduo 已提交
300
        def test_w_is_selected_rows(self):
C
chengduo 已提交
301 302 303 304 305
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                for inplace in [True, False]:
                    self.check_with_place(place, inplace)

C
chengduo 已提交
306 307 308 309 310
    cls_name = "{0}_{1}".format(parent.__name__, "SumFp16Test")
    TestSumFp16Case.__name__ = cls_name
    globals()[cls_name] = TestSumFp16Case


311 312
#----------- test bf16 -----------
class TestSumBF16Op(OpTest):
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    def setUp(self):
        self.op_type = "sum"
        self.init_kernel_type()
        x0 = np.random.random((3, 40)).astype(np.float32)
        x1 = np.random.random((3, 40)).astype(np.float32)
        x2 = np.random.random((3, 40)).astype(np.float32)
        y = x0 + x1 + x2
        self.inputs = {
            "X": [("x0", convert_float_to_uint16(x0)),
                  ("x1", convert_float_to_uint16(x1)),
                  ("x2", convert_float_to_uint16(x2))]
        }
        self.outputs = {'Out': convert_float_to_uint16(y)}

    def init_kernel_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out', numeric_grad_delta=0.5)


S
Steffy-zxf 已提交
338
class API_Test_Add_n(unittest.TestCase):
339

340 341
    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
342 343 344 345 346 347
            input0 = fluid.layers.fill_constant(shape=[2, 3],
                                                dtype='int64',
                                                value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3],
                                                dtype='int64',
                                                value=3)
348 349
            expected_result = np.empty((2, 3))
            expected_result.fill(8)
S
Steffy-zxf 已提交
350
            sum_value = paddle.add_n([input0, input1])
351 352 353
            exe = fluid.Executor(fluid.CPUPlace())
            result = exe.run(fetch_list=[sum_value])

S
Steffy-zxf 已提交
354 355 356 357 358 359 360 361 362
            self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            input0 = paddle.ones(shape=[2, 3], dtype='float32')
            expected_result = np.empty((2, 3))
            expected_result.fill(2)
            sum_value = paddle.add_n([input0, input0])

            self.assertEqual((sum_value.numpy() == expected_result).all(), True)
363

364
    def test_dygraph_api(self):
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        with fluid.dygraph.guard():
            with _test_eager_guard():
                input0 = paddle.ones(shape=[2, 3], dtype='float32')
                input1 = paddle.ones(shape=[2, 3], dtype='float32')
                input0.stop_gradient = False
                input1.stop_gradient = False
                expected_result = np.empty((2, 3))
                expected_result.fill(2)
                sum_value = paddle.add_n([input0, input1])
                self.assertEqual((sum_value.numpy() == expected_result).all(),
                                 True)

                expected_grad_result = np.empty((2, 3))
                expected_grad_result.fill(1)
                sum_value.backward()
                self.assertEqual(
                    (input0.grad.numpy() == expected_grad_result).all(), True)
                self.assertEqual(
                    (input1.grad.numpy() == expected_grad_result).all(), True)

W
Weilong Wu 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    def test_add_n_and_add_and_grad(self):
        with fluid.dygraph.guard():
            np_x = np.array([[1, 2, 3], [4, 5, 6]])
            np_y = [[7, 8, 9], [10, 11, 12]]
            np_z = [[1, 1, 1], [1, 1, 1]]
            x = paddle.to_tensor(np_x, dtype='float32', stop_gradient=False)
            y = paddle.to_tensor(np_y, dtype='float32', stop_gradient=False)
            z = paddle.to_tensor(np_z, dtype='float32')

            out1 = x + z
            out2 = y + z
            out = paddle.add_n([out1, out2])

            dx, dy = paddle.grad([out], [x, y], create_graph=True)

            expected_out = np.array([[10., 12., 14.], [16., 18., 20.]])
            expected_dx = np.array([[1, 1, 1], [1, 1, 1]])
            expected_dy = np.array([[1, 1, 1], [1, 1, 1]])

404 405 406
            np.testing.assert_allclose(out, expected_out, rtol=1e-05)
            np.testing.assert_allclose(dx, expected_dx, rtol=1e-05)
            np.testing.assert_allclose(dy, expected_dy, rtol=1e-05)
W
Weilong Wu 已提交
407

408

409
class TestRaiseSumError(unittest.TestCase):
410

411
    def test_errors(self):
412

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        def test_type():
            fluid.layers.sum([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sum([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sum(data1)

        self.assertRaises(TypeError, test_dtype1)


class TestRaiseSumsError(unittest.TestCase):
433

434
    def test_errors(self):
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        def test_type():
            fluid.layers.sums([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sums(data1)

        self.assertRaises(TypeError, test_dtype1)

        def test_out_type():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            fluid.layers.sums([data1, data2], out=[10])

        self.assertRaises(TypeError, test_out_type)

        def test_out_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            out = fluid.data(name="out", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2], out=out)

        self.assertRaises(TypeError, test_out_dtype)


L
Leo Chen 已提交
470
class TestSumOpError(unittest.TestCase):
471

L
Leo Chen 已提交
472
    def test_errors(self):
473

L
Leo Chen 已提交
474 475
        def test_empty_list_input():
            with fluid.dygraph.guard():
476
                fluid._legacy_C_ops.sum([])
L
Leo Chen 已提交
477 478 479

        def test_list_of_none_input():
            with fluid.dygraph.guard():
480
                fluid._legacy_C_ops.sum([None])
L
Leo Chen 已提交
481 482 483 484 485

        self.assertRaises(Exception, test_empty_list_input)
        self.assertRaises(Exception, test_list_of_none_input)


C
chengduo 已提交
486 487
create_test_sum_fp16_class(TestSelectedRowsSumOp)
create_test_sum_fp16_class(TestLoDTensorAndSelectedRowsOp)
C
chengduo 已提交
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

class TestReduceOPTensorAxisBase(unittest.TestCase):

    def setUp(self):
        paddle.disable_static()
        paddle.seed(2022)
        self.temp_dir = tempfile.TemporaryDirectory()
        self.save_path = os.path.join(self.temp_dir.name, 'reduce_tensor_axis')
        self.place = paddle.CUDAPlace(
            0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace()
        self.keepdim = False
        self.init_data()

    def tearDwon(self):
        self.temp_dir.cleanup()

    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array((1, 2), dtype='int64')
        self.tensor_axis = paddle.to_tensor(self.np_axis, dtype='int64')

    def test_dygraph(self):
        self.x.stop_gradient = False
        pd_out = self.pd_api(self.x, self.tensor_axis)
        np_out = self.np_api(self.x.numpy(), tuple(self.np_axis))
        np.testing.assert_allclose(
            pd_out.numpy() if pd_out.size > 1 else pd_out.item(), np_out)
        pd_out.backward()
        self.assertEqual(self.x.gradient().shape, tuple(self.x.shape))

    def test_static_and_infer(self):
        paddle.enable_static()
        main_prog = paddle.static.Program()
        starup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, starup_prog):
            # run static
            x = paddle.static.data(shape=self.x.shape,
                                   name='x',
                                   dtype='float32')
            if isinstance(self.tensor_axis, paddle.Tensor):
                axis = paddle.assign(self.np_axis)
            else:
                axis = []
                for i, item in enumerate(self.tensor_axis):
                    if isinstance(item, int):
                        axis.append(item)
                    else:
                        axis.append(paddle.full([1], self.np_axis[i], 'int64'))

            linear = paddle.nn.Linear(x.shape[-1], 5)
            linear_out = linear(x)
            out = self.pd_api(linear_out, axis, keepdim=self.keepdim)
            exe = paddle.static.Executor(self.place)
            exe.run(starup_prog)
            static_out = exe.run(feed={'x': self.x.numpy().astype('float32')},
                                 fetch_list=[out])

            # run infer
            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
            config = paddle_infer.Config(self.save_path + '.pdmodel',
                                         self.save_path + '.pdiparams')
            if paddle.is_compiled_with_cuda():
                config.enable_use_gpu(100, 0)
            else:
                config.disable_gpu()
            predictor = paddle_infer.create_predictor(config)
            input_names = predictor.get_input_names()
            input_handle = predictor.get_input_handle(input_names[0])
            fake_input = self.x.numpy().astype('float32')
            input_handle.reshape(self.x.shape)
            input_handle.copy_from_cpu(fake_input)
            predictor.run()
            output_names = predictor.get_output_names()
            output_handle = predictor.get_output_handle(output_names[0])
            infer_out = output_handle.copy_to_cpu()
            np.testing.assert_allclose(static_out[0], infer_out)


class TestSumWithTensorAxis1(TestReduceOPTensorAxisBase):

    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
            paddle.to_tensor([2], 'int64')
        ]


Q
qijun 已提交
583
if __name__ == "__main__":
584
    enable_static()
585
    unittest.main()