test_elementwise_min_op.py 7.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
fengjiayi 已提交
15
import unittest
16

F
fengjiayi 已提交
17
import numpy as np
18
from eager_op_test import OpTest, skip_check_grad_ci
19

S
sneaxiy 已提交
20
import paddle
21 22
from paddle import _legacy_C_ops, fluid
from paddle.fluid import core
S
sneaxiy 已提交
23 24

paddle.enable_static()
F
fengjiayi 已提交
25 26


27 28 29 30 31 32 33
def broadcast_wrapper(shape=[1, 10, 12, 1]):
    def min_wrapper(x, y, axis=-1):
        return paddle.minimum(x, y.reshape(shape))

    return min_wrapper


F
fengjiayi 已提交
34 35 36
class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_min"
37
        self.python_api = paddle.minimum
F
fengjiayi 已提交
38
        # If x and y have the same value, the min() is not differentiable.
F
fengjiayi 已提交
39 40
        # So we generate test data by the following method
        # to avoid them being too close to each other.
41 42 43
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
44 45 46 47
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
48
        self.check_output()
F
fengjiayi 已提交
49 50

    def test_check_grad_normal(self):
51
        self.check_grad(['X', 'Y'], 'Out')
F
fengjiayi 已提交
52 53

    def test_check_grad_ingore_x(self):
54 55 56
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")
        )
F
fengjiayi 已提交
57 58

    def test_check_grad_ingore_y(self):
59 60 61
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')
        )
F
fengjiayi 已提交
62 63


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
class TestElementwiseMinOp_ZeroDim1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        self.python_api = paddle.minimum
        x = np.random.uniform(0.1, 1, []).astype("float64")
        y = np.random.uniform(0.1, 1, []).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMinOp_ZeroDim2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        self.python_api = paddle.minimum
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        y = np.random.uniform(0.1, 1, []).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseMinOp_ZeroDim3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
        self.python_api = paddle.minimum
        x = np.random.uniform(0.1, 1, []).astype("float64")
        y = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


94
@skip_check_grad_ci(
95 96
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
97 98 99
class TestElementwiseMinOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
100
        self.python_api = paddle.minimum
101 102
        x = np.random.random_integers(-5, 5, [10, 3, 4]).astype("float64")
        y = np.array([0.5]).astype("float64")
103 104 105 106
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


107
class TestElementwiseMinOp_Vector(TestElementwiseOp):
F
fengjiayi 已提交
108 109
    def setUp(self):
        self.op_type = "elementwise_min"
110
        self.python_api = paddle.minimum
111 112 113
        x = np.random.random((100,)).astype("float64")
        sgn = np.random.choice([-1, 1], (100,)).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100,)).astype("float64")
F
fengjiayi 已提交
114 115 116 117
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


118
class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
F
fengjiayi 已提交
119 120
    def setUp(self):
        self.op_type = "elementwise_min"
121
        self.python_api = broadcast_wrapper(shape=[1, 1, 100])
122
        x = np.random.uniform(0.5, 1, (2, 3, 100)).astype(np.float64)
123 124 125 126
        sgn = np.random.choice([-1, 1], (100,)).astype(np.float64)
        y = x[0, 0, :] + sgn * np.random.uniform(1, 2, (100,)).astype(
            np.float64
        )
F
fengjiayi 已提交
127 128 129
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
130 131 132
            'Out': np.minimum(
                self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100)
            )
F
fengjiayi 已提交
133 134 135
        }


136 137 138
class TestElementwiseMinOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
139
        self.python_api = paddle.minimum
140 141
        x = np.random.uniform(0.5, 1, (2, 10, 2, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 10, 1, 5)).astype(np.float64)
142
        y = x + sgn * np.random.uniform(1, 2, (2, 10, 1, 5)).astype(np.float64)
143 144 145 146 147
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


S
sneaxiy 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161
class TestElementwiseMinOpFP16(unittest.TestCase):
    def get_out_and_grad(self, x_np, y_np, axis, place, use_fp32=False):
        assert x_np.dtype == np.float16
        assert y_np.dtype == np.float16
        if use_fp32:
            x_np = x_np.astype(np.float32)
            y_np = y_np.astype(np.float32)
        dtype = np.float16

        with fluid.dygraph.guard(place):
            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
            x.stop_gradient = False
            y.stop_gradient = False
162
            z = _legacy_C_ops.elementwise_min(x, y, 'axis', axis)
S
sneaxiy 已提交
163
            x_g, y_g = paddle.grad([z], [x, y])
164 165 166 167 168
            return (
                z.numpy().astype(dtype),
                x_g.numpy().astype(dtype),
                y_g.numpy().astype(dtype),
            )
S
sneaxiy 已提交
169 170 171 172 173 174 175 176 177 178 179

    def check_main(self, x_shape, y_shape, axis=-1):
        if not paddle.is_compiled_with_cuda():
            return
        place = paddle.CUDAPlace(0)
        if not core.is_float16_supported(place):
            return

        x_np = np.random.random(size=x_shape).astype(np.float16)
        y_np = np.random.random(size=y_shape).astype(np.float16)

180 181 182
        z_1, x_g_1, y_g_1 = self.get_out_and_grad(
            x_np, y_np, axis, place, False
        )
S
sneaxiy 已提交
183
        z_2, x_g_2, y_g_2 = self.get_out_and_grad(x_np, y_np, axis, place, True)
184 185 186
        np.testing.assert_array_equal(z_1, z_2)
        np.testing.assert_array_equal(x_g_1, x_g_2)
        np.testing.assert_array_equal(y_g_1, y_g_2)
S
sneaxiy 已提交
187 188 189

    def test_main(self):
        self.check_main((13, 17), (13, 17))
190 191 192
        self.check_main((10, 3, 4), (1,))
        self.check_main((100,), (100,))
        self.check_main((2, 3, 100), (100,))
S
sneaxiy 已提交
193 194 195
        self.check_main((2, 10, 2, 5), (2, 10, 1, 5))


F
fengjiayi 已提交
196 197
if __name__ == '__main__':
    unittest.main()