conv_bn_fuse_pass.cc 28.3 KB
Newer Older
S
Sylwester Fraczek 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
W
wanghuancoder 已提交
16

S
Sylwester Fraczek 已提交
17
#include <string>
W
wanghuancoder 已提交
18

19
#include "paddle/fluid/framework/convert_utils.h"
Z
zyfncg 已提交
20
#include "paddle/fluid/framework/eigen.h"
21
#include "paddle/fluid/framework/lod_tensor.h"
P
Pei Yang 已提交
22
#include "paddle/fluid/framework/op_version_registry.h"
23
#include "paddle/fluid/framework/tensor.h"
S
Sylwester Fraczek 已提交
24
#include "paddle/fluid/platform/enforce.h"
25 26
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/common/data_type.h"
S
Sylwester Fraczek 已提交
27

28
namespace phi {
29
class DenseTensor;
30
}  // namespace phi
31

W
wanghuancoder 已提交
32 33 34 35 36 37
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

38 39
namespace {
template <typename T1, typename T2>
40
void ConvertTensorType(phi::DenseTensor* tensor) {
41
  phi::DenseTensor tmp_tensor;
42 43 44 45 46 47 48 49 50 51 52 53 54
  tmp_tensor.set_type(paddle::experimental::CppTypeToDataType<T2>::Type());
  tmp_tensor.Resize(tensor->dims());
  auto* tmp_data = tmp_tensor.mutable_data<T2>(paddle::platform::CPUPlace());
  auto* data = tensor->mutable_data<T1>(paddle::platform::CPUPlace());
  for (int i = 0; i < tensor->numel(); i++) {
    tmp_data[i] = static_cast<T2>(data[i]);
  }
  tensor->clear();
  paddle::framework::TensorCopySync(
      tmp_tensor, paddle::platform::CPUPlace(), tensor);
}
}  // namespace

S
Sylwester Fraczek 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
namespace paddle {
namespace framework {
namespace ir {

#define GET_CONV_BN_NODES(pattern_name)                                      \
  /* OPERATORS */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name);                       \
  GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name);           \
  /* CONV inputs */                                                          \
  GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name);         \
  /* CONV outputs */                                                         \
  GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name);               \
  /* BN inputs */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name);               \
  GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name);         \
  /* BN outputs */                                                           \
  GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name);         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name);     \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)

void recompute_bias_and_weights(const Scope* scope,
                                ir::Node* conv_weight,            //
                                const ir::Node& bn_scale,         //
                                const LoDTensor& bn_bias_tensor,  //
                                const ir::Node& bn_mean,          //
                                const ir::Node& bn_variance,      //
85
                                LoDTensor* eltwise_y_in_tensor,   //
86 87
                                float epsilon,
                                const std::string& conv_type) {
88 89 90 91 92 93 94
  using EigenVectorArrayMap =
      Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
  using ConstEigenVectorArrayMap =
      Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
  using EigenMatrixArrayMap = Eigen::Map<
      Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

S
Sylwester Fraczek 已提交
95
  // Re-compute bias of conv2d from BN
96 97 98 99 100 101 102
  PADDLE_ENFORCE_EQ(eltwise_y_in_tensor->dims(),
                    bn_bias_tensor.dims(),
                    platform::errors::InvalidArgument(
                        "phi::DenseTensor elementwise y(%d) and batch "
                        "norm bias(%d) must have same dims.",
                        eltwise_y_in_tensor->dims().size(),
                        bn_bias_tensor.dims().size()));
S
Sylwester Fraczek 已提交
103 104 105 106 107 108

  auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
  auto* variance_tensor =
      scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
  auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();

109 110
  ConstEigenVectorArrayMap scale_array(
      scale_tensor->data<float>(), scale_tensor->numel(), 1);
111 112
  EigenVectorArrayMap variance_array(
      variance_tensor->mutable_data<float>(platform::CPUPlace()),
113 114 115 116 117 118
      variance_tensor->numel(),
      1);
  ConstEigenVectorArrayMap mean_array(
      mean_tensor->data<float>(), mean_tensor->numel(), 1);
  ConstEigenVectorArrayMap bn_bias_array(
      bn_bias_tensor.data<float>(), bn_bias_tensor.numel(), 1);
S
Sylwester Fraczek 已提交
119

120 121 122 123
  // variance will not be used anymore, so make it std_array and then tmp_array
  variance_array += epsilon;
  variance_array = variance_array.sqrt();
  variance_array = scale_array / variance_array;
124
  for (int i = 0; i < variance_tensor->numel(); i++) {
125 126
    PADDLE_ENFORCE_EQ(std::isfinite(variance_array[i]),
                      true,
127 128 129 130 131
                      platform::errors::InvalidArgument(
                          "The inverse of Fused batch norm variance "
                          "should be finite. Found nonfinite values! "
                          "Please check %s ",
                          bn_variance.Name()));
132
  }
133 134
  EigenVectorArrayMap eltwise_y_in_array(
      eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
135 136
      eltwise_y_in_tensor->numel(),
      1);
137

138 139
  eltwise_y_in_array =
      ((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array;
140
  for (int i = 0; i < eltwise_y_in_tensor->numel(); i++) {
141 142
    PADDLE_ENFORCE_EQ(std::isfinite(eltwise_y_in_array[i]),
                      true,
143 144 145 146 147
                      platform::errors::InvalidArgument(
                          "Fused batch norm bias should be "
                          "finite. Found nonfinite values! "
                          "Please check %s and related variables.",
                          bn_variance.Name()));
148
  }
S
Sylwester Fraczek 已提交
149 150

  // Re-compute weight of conv2d from BN
151 152
  auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
  auto weights_shape = weights->dims();
153 154 155 156 157 158 159 160 161 162 163 164 165
  auto weights_data = weights->mutable_data<float>(platform::CPUPlace());

  // ConvTranspose weights are in IOHW format
  if (conv_type == "conv2d_transpose") {
    int kernel_size = weights_shape[2] * weights_shape[3];
    for (int i = 0; i < weights->numel();) {
      for (int j = 0; j < weights_shape[1]; ++j) {
        for (int k = 0; k < kernel_size; ++k, ++i) {
          weights_data[i] *= variance_array[j];
        }
      }
    }
  } else {
166
    auto weights_shape_2d = phi::flatten_to_2d(weights_shape, 1);
167

168 169
    EigenMatrixArrayMap weights_array_2d(
        weights_data, weights_shape_2d[0], weights_shape_2d[1]);
170

171 172
    weights_array_2d.colwise() *= variance_array;
  }
S
Sylwester Fraczek 已提交
173 174
}

W
Wangzheee 已提交
175 176 177 178 179 180 181 182 183
ConvBNFusePass::ConvBNFusePass() {
  AddOpCompat(OpCompat("conv2d"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
184
      .IsTensor()
W
Wangzheee 已提交
185 186 187
      .IsOptional()
      .End()
      .AddInput("ResidualData")
188
      .IsTensor()
W
Wangzheee 已提交
189 190 191 192 193 194
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
195
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
196 197
      .End()
      .AddAttr("paddings")
198
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
199 200 201 202 203 204 205 206 207
      .End()
      .AddAttr("padding_algorithm")
      .IsOptional()
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
208
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();

  AddOpCompat(OpCompat("batch_norm"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Scale")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddInput("Mean")
      .IsTensor()
      .End()
      .AddInput("Variance")
      .IsTensor()
      .End()
      .AddOutput("MeanOut")
      .IsTensor()
      .End()
      .AddOutput("VarianceOut")
      .IsTensor()
      .End()
      .AddOutput("SavedMean")
      .IsTensor()
      .End()
      .AddOutput("SavedVariance")
      .IsTensor()
      .End()
      .AddOutput("Y")
      .IsTensor()
      .End()
245 246 247 248
      .AddOutput("ReserveSpace")
      .IsTensor()
      .IsOptional()
      .End()
W
Wangzheee 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
      .AddAttr("epsilon")
      .IsNumLE(0.001f)
      .IsNumGE(0.0f)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumEQ(1)
      .End();
}

269
void ConvBNFusePass::ApplyImpl(ir::Graph* graph) const {
270 271
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
272
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
273 274

  auto* scope = param_scope();
275 276
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
277 278 279 280 281 282

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
283
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
284
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
285
  conv_bn_pattern(conv_input, conv_type(), false /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
286 287 288 289

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
W
Wangzheee 已提交
290 291 292 293
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
294
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
295 296 297
    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
W
Wojciech Uss 已提交
298 299
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,
    // bn_saved_variance
S
Sylwester Fraczek 已提交
300 301
    GET_CONV_BN_NODES(conv_bn_pattern);

W
Wojciech Uss 已提交
302 303 304
    // check if fuse can be done and if MKL-DNN should be used
    FuseOptions fuse_option = FindFuseOption(*conv, *batch_norm);
    if (fuse_option == DO_NOT_FUSE) {
305
      VLOG(3) << "do not perform " + conv_type() + " bn fuse";
W
Wojciech Uss 已提交
306 307 308
      return;
    }

309 310 311 312 313 314
    // conv_weight fp32 --> fp16
    auto* conv_weight_tensor =
        scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
    auto tensor_type = conv_weight_tensor->dtype();

    if (tensor_type == paddle::experimental::DataType::FLOAT16) {
315
      ConvertTensorType<float16, float>(conv_weight_tensor);
316 317
    }

318 319 320 321
    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

S
Sylwester Fraczek 已提交
322 323
    // Create eltwise_y (conv bias) variable
    VarDesc eltwise_y_in_desc(
324
        patterns::PDNodeName("fuse_conv_bn", conv_type() + "_eltwise_y_in"));
325
    eltwise_y_in_desc.SetShape(phi::vectorize(bn_bias_tensor->dims()));
326 327
    eltwise_y_in_desc.SetDataType(
        framework::TransToProtoVarType(bn_bias_tensor->dtype()));
328
    eltwise_y_in_desc.SetLoDLevel(bn_bias->Var()->GetLoDLevel());
W
Wojciech Uss 已提交
329
    eltwise_y_in_desc.SetPersistable(true);
S
Sylwester Fraczek 已提交
330 331 332 333 334 335 336
    auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
    auto* eltwise_y_in_tensor =
        scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

    // Initialize eltwise_y
    eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
    std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
337 338
                eltwise_y_in_tensor->numel(),
                0.0f);
S
Sylwester Fraczek 已提交
339 340

    // update weights and biases
341
    float epsilon =
R
Ruibiao Chen 已提交
342
        PADDLE_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
343 344 345 346 347 348 349 350 351
    recompute_bias_and_weights(scope,
                               conv_weight,
                               *bn_scale,
                               *bn_bias_tensor,
                               *bn_mean,
                               *bn_variance,
                               eltwise_y_in_tensor,
                               epsilon,
                               conv_type());
S
Sylwester Fraczek 已提交
352

353
    if (tensor_type == paddle::experimental::DataType::FLOAT16) {
354 355
      ConvertTensorType<float, float16>(conv_weight_tensor);
      ConvertTensorType<float, float16>(eltwise_y_in_tensor);
356 357
    }

W
Wojciech Uss 已提交
358 359 360 361
    // with MKL-DNN fuse conv+bn into conv with bias
    // without MKL-DNN fuse conv+bn into conv+elementwise_add
    if (fuse_option == FUSE_MKLDNN) {
      auto input_names = conv->Op()->InputNames();
362 363 364
      bool has_bias =
          std::find(input_names.begin(), input_names.end(), "Bias") !=
          input_names.end();
W
Wojciech Uss 已提交
365 366 367
      if (has_bias && conv->Op()->Input("Bias").size() > 0) {
        // reuse existing conv bias node
        auto conv_bias_names = conv->Op()->Input("Bias");
368
        PADDLE_ENFORCE_EQ(
369 370
            conv_bias_names.size(),
            1UL,
371
            platform::errors::InvalidArgument("Find input var Bais error."));
W
Wojciech Uss 已提交
372 373
        auto* conv_bias_var = scope->FindVar(conv_bias_names[0]);
        auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>();
374
        PADDLE_ENFORCE_EQ(
375 376
            conv_bias_tensor->dims(),
            eltwise_y_in_tensor->dims(),
377
            platform::errors::InvalidArgument(
378
                "phi::DenseTensor convolution bias(%d) and elementwise y(%d) "
379 380 381
                "must have same dims.",
                conv_bias_tensor->dims().size(),
                eltwise_y_in_tensor->dims().size()));
W
Wojciech Uss 已提交
382 383 384 385 386 387 388 389 390 391 392

        auto eigen_conv_bias = EigenVector<float>::From(*conv_bias_tensor);
        eigen_conv_bias += EigenVector<float>::From(*eltwise_y_in_tensor);
      } else {
        // add new conv_bias node
        conv->Op()->SetInput(
            "Bias", std::vector<std::string>({eltwise_y_in_node->Name()}));
        IR_NODE_LINK_TO(eltwise_y_in_node, conv);
      }
      conv->Op()->SetOutput("Output",
                            std::vector<std::string>({bn_out->Name()}));
W
Wangzheee 已提交
393 394 395 396
      if (!IsCompat(*conv->Op())) {
        LOG(WARNING) << "conv_bn fuse pass in out conv op compat failed.";
        return;
      }
397 398 399 400 401 402 403 404 405 406 407
      GraphSafeRemoveNodes(graph,
                           {conv_out,
                            bn_scale,
                            bn_bias,
                            bn_mean,
                            bn_variance,
                            batch_norm,
                            bn_mean_out,
                            bn_variance_out,
                            bn_saved_mean,
                            bn_saved_variance});
W
Wojciech Uss 已提交
408 409 410 411 412 413 414 415 416 417 418

      IR_NODE_LINK_TO(conv, bn_out);
      found_conv_bn_count++;
    } else {  // fuse_option == FUSE_NATIVE
      // create an elementwise add node.
      OpDesc desc;
      desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
      desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
      desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
      desc.SetType("elementwise_add");
      desc.SetAttr("axis", 1);
W
Wangzheee 已提交
419 420 421 422 423
      if (!IsCompat(desc)) {
        LOG(WARNING)
            << "conv_bn fuse pass in out elementwise_add op compat failed.";
        return;
      }
W
Wojciech Uss 已提交
424 425
      auto eltwise_op = g->CreateOpNode(&desc);  // OpDesc will be copied.

426 427 428 429 430 431 432 433 434 435
      GraphSafeRemoveNodes(graph,
                           {bn_scale,
                            bn_bias,
                            bn_mean,
                            bn_variance,
                            batch_norm,
                            bn_mean_out,
                            bn_variance_out,
                            bn_saved_mean,
                            bn_saved_variance});
W
Wojciech Uss 已提交
436 437 438 439 440 441

      IR_NODE_LINK_TO(conv_out, eltwise_op);
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
      IR_NODE_LINK_TO(eltwise_op, bn_out);
      found_conv_bn_count++;
    }
S
Sylwester Fraczek 已提交
442 443
  };

444
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
445 446 447 448

  AddStatis(found_conv_bn_count);
}

W
Wangzheee 已提交
449 450 451 452 453 454 455 456 457
ConvEltwiseAddBNFusePass::ConvEltwiseAddBNFusePass() {
  AddOpCompat(OpCompat("conv2d"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
458
      .IsTensor()
W
Wangzheee 已提交
459 460 461
      .IsOptional()
      .End()
      .AddInput("ResidualData")
462
      .IsTensor()
W
Wangzheee 已提交
463 464 465 466 467 468
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
469
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
470 471
      .End()
      .AddAttr("paddings")
472
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
473 474 475 476 477 478 479 480 481
      .End()
      .AddAttr("padding_algorithm")
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
      .IsOptional()
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
482
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();

  AddOpCompat(OpCompat("batch_norm"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Scale")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddInput("Mean")
      .IsTensor()
      .End()
      .AddInput("Variance")
      .IsTensor()
      .End()
      .AddOutput("MeanOut")
      .IsTensor()
      .End()
      .AddOutput("VarianceOut")
      .IsTensor()
      .End()
      .AddOutput("SavedMean")
      .IsTensor()
      .End()
      .AddOutput("SavedVariance")
      .IsTensor()
      .End()
      .AddOutput("Y")
      .IsTensor()
      .End()
519 520 521 522
      .AddOutput("ReserveSpace")
      .IsTensor()
      .IsOptional()
      .End()
W
Wangzheee 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
      .AddAttr("epsilon")
      .IsNumLE(0.001f)
      .IsNumGE(0.0f)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumEQ(1)
      .End();
}

543
void ConvEltwiseAddBNFusePass::ApplyImpl(ir::Graph* graph) const {
544 545
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
546
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
547 548

  auto* scope = param_scope();
549 550
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
551 552 553 554 555 556

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
557
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
558
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
559
  conv_bn_pattern(conv_input, conv_type(), true /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
560 561 562 563

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
W
Wangzheee 已提交
564 565 566 567
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
568
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);
    // OPERATORS
    GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
    // BIAS inputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
    // BIAS outputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);

    // Get eltwise_y (conv bias) variable
    auto* eltwise_y_in_tensor =
        scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // update weights and biases
590
    float epsilon =
R
Ruibiao Chen 已提交
591
        PADDLE_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
592

593 594 595 596 597 598 599 600 601 602
    // conv_weight fp16 --> fp32
    auto* conv_weight_tensor =
        scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
    auto tensor_type = conv_weight_tensor->dtype();

    if (tensor_type == paddle::experimental::DataType::FLOAT16) {
      ConvertTensorType<float16, float>(conv_weight_tensor);
      ConvertTensorType<float16, float>(eltwise_y_in_tensor);
    }

603 604 605 606 607 608 609
    // if bias is an input to other ops as well then we cannot overwrite it
    // so we create separate elementwise Y in nodes
    if (eltwise_y_in->outputs.size() > 1) {
      // Make a copy of eltwise Y input tensor
      // Create eltwise_y (conv bias) variable
      VarDesc eltwise_y_in_desc(patterns::PDNodeName(
          name_scope_, "eltwise_y_in" + std::to_string(found_conv_bn_count)));
610
      eltwise_y_in_desc.SetShape(phi::vectorize(eltwise_y_in_tensor->dims()));
611 612
      eltwise_y_in_desc.SetDataType(
          framework::TransToProtoVarType(eltwise_y_in_tensor->dtype()));
613 614 615 616 617 618 619
      eltwise_y_in_desc.SetLoDLevel(eltwise_y_in->Var()->GetLoDLevel());
      eltwise_y_in_desc.SetPersistable(true);
      auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
      auto* eltwise_y_in_tensor_ex =
          scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

      // Initialize eltwise_y
620 621 622 623 624 625 626 627 628 629 630 631
      TensorCopy(
          *eltwise_y_in_tensor, platform::CPUPlace(), eltwise_y_in_tensor_ex);

      recompute_bias_and_weights(scope,
                                 conv_weight,
                                 *bn_scale,
                                 *bn_bias_tensor,
                                 *bn_mean,
                                 *bn_variance,
                                 eltwise_y_in_tensor_ex,
                                 epsilon,
                                 conv_type());
632 633 634 635 636 637 638 639 640 641 642 643 644 645
      // Set new var
      eltwise->Op()->RenameInput(eltwise_y_in->Name(),
                                 eltwise_y_in_node->Name());
      // Link new bias node to eltwise
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise);
      // unlink original bias from eltwise_op
      eltwise_y_in->outputs.erase(
          std::remove_if(eltwise_y_in->outputs.begin(),
                         eltwise_y_in->outputs.end(),
                         [&](Node*& n) {
                           return n->id() == eltwise->id() ? true : false;
                         }),
          eltwise_y_in->outputs.end());
    } else {
646 647 648 649 650 651 652 653 654
      recompute_bias_and_weights(scope,
                                 conv_weight,
                                 *bn_scale,
                                 *bn_bias_tensor,
                                 *bn_mean,
                                 *bn_variance,
                                 eltwise_y_in_tensor,
                                 epsilon,
                                 conv_type());
655
    }
S
Sylwester Fraczek 已提交
656

657 658 659 660 661
    if (tensor_type == paddle::experimental::DataType::FLOAT16) {
      ConvertTensorType<float, float16>(conv_weight_tensor);
      ConvertTensorType<float, float16>(eltwise_y_in_tensor);
    }

S
Sylwester Fraczek 已提交
662 663 664
    // Update the elementwise_add node
    eltwise->Op()->SetAttr("axis", 1);
    eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
W
Wangzheee 已提交
665 666 667 668 669
    if (!IsCompat(*eltwise->Op())) {
      LOG(WARNING)
          << "conv_eltwise_bn fuse pass in out eltwise op compat failed.";
      return;
    }
670 671 672 673 674 675 676 677 678 679 680
    GraphSafeRemoveNodes(graph,
                         {bn_scale,
                          bn_bias,
                          bn_mean,
                          bn_variance,
                          batch_norm,
                          bn_mean_out,
                          bn_variance_out,
                          bn_saved_mean,
                          bn_saved_variance,
                          eltwise_out});
S
Sylwester Fraczek 已提交
681 682 683 684 685 686

    IR_NODE_LINK_TO(eltwise, bn_out);

    found_conv_bn_count++;
  };

687
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
688 689 690 691

  AddStatis(found_conv_bn_count);
}

W
Wangzheee 已提交
692 693 694 695 696 697 698 699 700
ConvTransposeBNFusePass::ConvTransposeBNFusePass() {
  AddOpCompat(OpCompat("conv2d_transpose"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
701
      .IsTensor()
W
Wangzheee 已提交
702 703 704 705 706
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
707 708 709 710 711 712 713 714 715
      .AddAttr("output_padding")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("output_size")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("groups")
716
      .IsNumEQ(1)
717 718 719 720
      .End()
      .AddAttr("dilations")
      .IsType<std::vector<int>>()
      .End()
W
Wangzheee 已提交
721
      .AddAttr("strides")
722
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
723 724
      .End()
      .AddAttr("paddings")
725
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
726 727
      .End()
      .AddAttr("padding_algorithm")
728
      .IsOptional()
W
Wangzheee 已提交
729
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
730 731
      .End()
      .AddAttr("data_format")
732
      .IsStringIn({"NCHW", "AnyLayout"})
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
      .End();
}

ConvTransposeEltwiseAddBNFusePass::ConvTransposeEltwiseAddBNFusePass() {
  AddOpCompat(OpCompat("conv2d_transpose"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("output_padding")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("output_size")
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
757 758 759
      .IsOptional()
      .End()
      .AddAttr("groups")
760
      .IsNumEQ(1)
W
Wangzheee 已提交
761 762
      .End()
      .AddAttr("dilations")
763 764 765 766 767 768 769 770 771
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("strides")
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("paddings")
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("padding_algorithm")
772
      .IsOptional()
773
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
W
Wangzheee 已提交
774 775
      .End()
      .AddAttr("data_format")
776
      .IsStringIn({"NCHW", "AnyLayout"})
W
Wangzheee 已提交
777 778 779
      .End();
}

780 781
DepthwiseConvBNFusePass::DepthwiseConvBNFusePass() {
  AddOpCompat(OpCompat("depthwise_conv2d"))
W
Wangzheee 已提交
782 783 784 785 786 787 788
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
789 790 791 792 793
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ResidualData")
      .IsTensor()
W
Wangzheee 已提交
794 795 796 797 798 799
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
800
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
801 802
      .End()
      .AddAttr("paddings")
803
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
804 805 806
      .End()
      .AddAttr("padding_algorithm")
      .IsOptional()
807
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
W
Wangzheee 已提交
808 809 810 811 812
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
813
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
814 815 816 817 818 819
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();
}

S
Sylwester Fraczek 已提交
820 821 822 823 824 825 826
}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvEltwiseAddBNFusePass);
827 828 829 830
REGISTER_PASS(conv_transpose_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeBNFusePass);
REGISTER_PASS(conv_transpose_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeEltwiseAddBNFusePass);
831 832 833 834
REGISTER_PASS(depthwise_conv_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvBNFusePass);
REGISTER_PASS(depthwise_conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvEltwiseAddBNFusePass);
P
Pei Yang 已提交
835 836 837
REGISTER_PASS_CAPABILITY(conv_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
838
            .LE("conv2d", 1)
P
Pei Yang 已提交
839 840 841 842
            .EQ("batch_norm", 0));
REGISTER_PASS_CAPABILITY(conv_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
843
            .LE("conv2d", 1)
844
            .LE("elementwise_add", 1)
P
Pei Yang 已提交
845
            .EQ("batch_norm", 0));
846 847 848 849 850 851
REGISTER_PASS_CAPABILITY(conv_transpose_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("conv2d_transpose", 2)
            .LE("elementwise_add", 1)
            .EQ("batch_norm", 0));
852 853 854 855 856
REGISTER_PASS_CAPABILITY(conv_transpose_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("conv2d_transpose", 2)
            .EQ("batch_norm", 0));