Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
672d94b2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
672d94b2
编写于
12月 17, 2021
作者:
F
feng_shuai
提交者:
GitHub
12月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add test for conv_transpose_bn_fuse_pass (#38203)
上级
6d1b8c52
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
230 addition
and
0 deletion
+230
-0
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
+5
-0
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
.../paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/ir/inference/test_conv_transpose_bn_fuse_pass.py
...nittests/ir/inference/test_conv_transpose_bn_fuse_pass.py
+224
-0
未找到文件。
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
浏览文件 @
672d94b2
...
...
@@ -744,3 +744,8 @@ REGISTER_PASS_CAPABILITY(conv_transpose_eltwiseadd_bn_fuse_pass)
.
LE
(
"conv2d_transpose"
,
2
)
.
LE
(
"elementwise_add"
,
1
)
.
EQ
(
"batch_norm"
,
0
));
REGISTER_PASS_CAPABILITY
(
conv_transpose_bn_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
LE
(
"conv2d_transpose"
,
2
)
.
EQ
(
"batch_norm"
,
0
));
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
浏览文件 @
672d94b2
...
...
@@ -89,5 +89,6 @@ if (WITH_MKLDNN)
set_tests_properties
(
test_mkldnn_depthwise_conv_pass PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_mkldnn_prelu_op PROPERTIES TIMEOUT 300
)
set_tests_properties
(
test_conv_transpose_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 250
)
set_tests_properties
(
test_conv_transpose_bn_fuse_pass PROPERTIES TIMEOUT 300
)
endif
()
endif
()
python/paddle/fluid/tests/unittests/ir/inference/test_conv_transpose_bn_fuse_pass.py
0 → 100644
浏览文件 @
672d94b2
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
PassAutoScanTest
,
IgnoreReasons
from
program_config
import
TensorConfig
,
ProgramConfig
,
OpConfig
import
numpy
as
np
import
copy
as
cp
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
import
hypothesis
from
hypothesis
import
given
,
settings
,
seed
,
example
,
assume
,
reproduce_failure
import
hypothesis.strategies
as
st
class
TestConvTransposeBnFusePass
(
PassAutoScanTest
):
'''
conv_input conv_weight_var(persistable)
\ /
conv_op
|
conv_out_var (bn_scale_var, bn_bias_var, bn_mean_var,bn_variance_var)
| /
batch_norm_op
|
\
bn_out_var (bn_mean_out_var, bn_variance_out_var,bn_saved_mean_var, bn_saved_variance_var)
'''
def
test
(
self
):
self
.
run_and_statis
(
quant
=
False
,
max_examples
=
150
,
max_duration
=
250
,
passes
=
[
"conv_transpose_bn_fuse_pass"
])
def
sample_program_config
(
self
,
draw
):
# generate random number
random_batch_size
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
3
))
random_channel
=
draw
(
st
.
integers
(
min_value
=
2
,
max_value
=
10
))
random_input_dim1
=
draw
(
st
.
integers
(
min_value
=
20
,
max_value
=
50
))
random_input_dim2
=
draw
(
st
.
integers
(
min_value
=
20
,
max_value
=
50
))
random_groups
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
2
))
random_dilations
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
3
),
min_size
=
2
,
max_size
=
2
))
random_strides
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
4
),
min_size
=
2
,
max_size
=
2
))
random_paddings
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
0
,
max_value
=
4
),
min_size
=
2
,
max_size
=
2
))
random_padding_algorithm
=
draw
(
st
.
sampled_from
([
"EXPLICIT"
,
"SAME"
,
"VALID"
]))
random_data_layout
=
draw
(
st
.
sampled_from
([
"NCHW"
,
"NHWC"
]))
random_use_mkldnn
=
draw
(
st
.
booleans
())
random_output_size
=
[]
random_filter
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
1
,
max_value
=
4
),
min_size
=
2
,
max_size
=
2
))
random_out_channel
=
draw
(
st
.
integers
(
min_value
=
10
,
max_value
=
25
))
random_epsilon
=
draw
(
st
.
floats
(
min_value
=
0.0
,
max_value
=
0.001
))
def
generate_conv2d_Input
():
shape
=
[
random_input_dim1
,
random_input_dim2
]
if
random_data_layout
==
"NCHW"
:
shape
.
insert
(
0
,
random_channel
*
random_groups
)
shape
.
insert
(
0
,
random_batch_size
)
else
:
shape
.
append
(
random_channel
)
shape
.
insert
(
0
,
random_batch_size
)
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
def
generate_conv2d_Filter
():
shape
=
cp
.
copy
(
random_filter
)
shape
.
insert
(
0
,
random_out_channel
*
random_groups
)
shape
.
insert
(
0
,
random_channel
*
random_groups
)
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
def
generate_batch_norm_Scale
():
return
np
.
random
.
random
(
[
random_out_channel
*
random_groups
*
random_groups
]).
astype
(
np
.
float32
)
def
generate_batch_norm_Bias
():
return
np
.
random
.
random
(
[
random_out_channel
*
random_groups
*
random_groups
]).
astype
(
np
.
float32
)
def
generate_batch_norm_Mean
():
return
np
.
random
.
random
(
[
random_out_channel
*
random_groups
*
random_groups
]).
astype
(
np
.
float32
)
def
generate_batch_norm_Variance
():
return
np
.
random
.
random
(
[
random_out_channel
*
random_groups
*
random_groups
]).
astype
(
np
.
float32
)
# define op
conv2d_op
=
OpConfig
(
type
=
"conv2d_transpose"
,
inputs
=
{
"Input"
:
[
"conv2d_Input"
],
"Filter"
:
[
"conv2d_Filter"
],
#"Bias": ["conv2d_Bias"],
},
outputs
=
{
"Output"
:
[
"conv2d_Out"
],
},
attrs
=
{
'groups'
:
random_groups
,
'dilations'
:
random_dilations
,
'strides'
:
random_strides
,
'paddings'
:
random_paddings
,
'padding_algorithm'
:
random_padding_algorithm
,
'data_format'
:
random_data_layout
,
'output_size'
:
random_output_size
,
'output_padding'
:
random_output_size
,
'use_mkldnn'
:
random_use_mkldnn
,
'is_test'
:
True
,
})
batch_norm_op
=
OpConfig
(
type
=
"batch_norm"
,
inputs
=
{
"X"
:
[
"conv2d_Out"
],
"Scale"
:
[
"batch_norm_Scale"
],
"Bias"
:
[
"batch_norm_Bias"
],
"Mean"
:
[
"batch_norm_Mean"
],
"Variance"
:
[
"batch_norm_Variance"
],
},
outputs
=
{
"Y"
:
[
"batch_norm_Y"
],
"MeanOut"
:
[
"batch_norm_Mean"
],
"VarianceOut"
:
[
"batch_norm_Variance"
],
"SavedMean"
:
[
"batch_norm_SavedMean"
],
"SavedVariance"
:
[
"batch_norm_SavedVariance"
],
"ReserveSpace"
:
[
"batch_norm_ReserveSpace"
],
},
attrs
=
{
'epsilon'
:
random_epsilon
,
'is_test'
:
True
,
'trainable_statistics'
:
False
,
'data_layout'
:
random_data_layout
,
'use_mkldnn'
:
random_use_mkldnn
,
})
# define model_net
model_net
=
[
conv2d_op
,
batch_norm_op
]
# set tensor
program_config
=
ProgramConfig
(
ops
=
model_net
,
inputs
=
{
"conv2d_Input"
:
TensorConfig
(
data_gen
=
generate_conv2d_Input
),
},
weights
=
{
"conv2d_Filter"
:
TensorConfig
(
data_gen
=
generate_conv2d_Filter
),
"batch_norm_Scale"
:
TensorConfig
(
data_gen
=
generate_batch_norm_Scale
),
"batch_norm_Bias"
:
TensorConfig
(
data_gen
=
generate_batch_norm_Bias
),
"batch_norm_Mean"
:
TensorConfig
(
data_gen
=
generate_batch_norm_Mean
),
"batch_norm_Variance"
:
TensorConfig
(
data_gen
=
generate_batch_norm_Variance
),
},
outputs
=
[
"batch_norm_Y"
])
return
program_config
def
sample_predictor_configs
(
self
,
program_config
):
# for mkldnn
config
=
self
.
create_inference_config
()
if
program_config
.
ops
[
0
].
attrs
[
'use_mkldnn'
]:
config
.
enable_mkldnn
()
yield
config
,
[
'conv2d_transpose'
],
(
1e-5
,
1e-5
)
# for cpu
else
:
yield
config
,
[
'conv2d_transpose'
,
'elementwise_add'
],
(
1e-5
,
1e-5
)
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
if
attrs
[
0
][
'data_format'
]
==
"NHWC"
:
return
False
return
True
def
add_ignore_pass_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
program_config
.
ops
[
0
].
attrs
[
'data_format'
]
==
"NHWC"
:
return
True
return
False
def
teller2
(
program_config
,
predictor_config
):
if
program_config
.
ops
[
0
].
attrs
[
'groups'
]
!=
1
:
return
True
return
False
self
.
add_ignore_check_case
(
teller1
,
IgnoreReasons
.
PASS_ACCURACY_ERROR
,
"The output format of conv2d_transpose is wrong when data_format attribute is NHWC"
)
self
.
add_ignore_check_case
(
teller2
,
IgnoreReasons
.
PASS_ACCURACY_ERROR
,
"there is diff when group >1 in this pass"
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录