layer.cc 10.8 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16
#include <algorithm>
J
Jiabin Yang 已提交
17
#include <queue>
18
#include <utility>
19
#include "paddle/fluid/framework/framework.pb.h"
20
#include "paddle/fluid/framework/op_registry.h"
J
Jiabin Yang 已提交
21 22 23
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
24
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
25
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
26
#include "paddle/fluid/platform/profiler.h"
27 28 29 30

namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
31
using framework::Variable;
Z
Zeng Jinle 已提交
32 33 34 35 36 37 38 39
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
J
Jiabin Yang 已提交
40
  PADDLE_ENFORCE_EQ(iter != set_.end(), true, "%s does not exist", name);
Z
Zeng Jinle 已提交
41 42 43 44 45 46 47 48 49 50 51 52
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
53 54 55 56
static framework::VariableNameMap CreateVarNameMap(
    const framework::OpInfo& op_info, const std::string& op_type,
    const NameVarBaseMap& varbase_map, bool is_input) {
  if (op_info.proto_ == nullptr) {
H
hong 已提交
57 58 59 60 61 62 63 64 65 66 67 68
    framework::VariableNameMap result;

    for (auto& it : varbase_map) {
      auto& var_vector = it.second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (auto& var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[it.first] = std::move(args);
    }
    return result;
M
minqiyang 已提交
69 70
  }

J
Jiabin Yang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  framework::VariableNameMap result;

  for (auto& var :
       is_input ? op_info.Proto().inputs() : op_info.Proto().outputs()) {
    auto it = varbase_map.find(var.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE_EQ(
          var.dispensable(), true,
          "Var: %s not dispensable and there are no such var in inputs",
          var.name());
      result[var.name()] = {};
    } else {
      auto& var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (auto& var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[var.name()] = std::move(args);
    }
M
minqiyang 已提交
91
  }
J
Jiabin Yang 已提交
92 93
  return result;
}
M
minqiyang 已提交
94

J
Jiabin Yang 已提交
95 96 97 98 99 100 101 102 103
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
104 105
  }

J
Jiabin Yang 已提交
106 107 108 109 110
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
111
    }
J
Jiabin Yang 已提交
112 113 114 115 116 117 118 119 120
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

static std::string DebugString(
    const std::string& name,
    const std::vector<std::shared_ptr<VarBase>>& vars) {
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
121

J
Jiabin Yang 已提交
122 123
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
124

J
Jiabin Yang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
    ss << vars[i]->Name() << "[";
    auto& var = vars[i]->Var();
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    } else if (var.IsType<framework::SelectedRows>()) {
      ss << "SelectedRows<";
      auto& selected_rows = var.Get<framework::SelectedRows>();
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
160 161 162 163
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
164
  }
165

J
Jiabin Yang 已提交
166 167
  ss << "}";
  return ss.str();
168 169
}

J
Jiabin Yang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
std::string LayerDebugString(const std::string& op_type,
                             const NameVarBaseMap& ins,
                             const NameVarBaseMap& outs) {
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
    ss << DebugString(pair.first, pair.second);
    ++i;
183 184
  }

J
Jiabin Yang 已提交
185 186 187 188 189 190 191 192 193
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
    ss << DebugString(pair.first, pair.second);
    ++i;
  }
  return ss.str();
}
194

J
Jiabin Yang 已提交
195 196 197 198 199 200
void VarBase::AddGradOps(const std::weak_ptr<OpBase>& op) {
  if (op.lock() == nullptr) {
    return;
  }
  for (const auto& cur_op : grad_ops_) {
    if (cur_op.lock() == op.lock()) {
201 202
      return;
    }
203
  }
J
Jiabin Yang 已提交
204 205
  grad_ops_.emplace_back(op);
}
206

J
Jiabin Yang 已提交
207 208
void VarBase::ClearGradient() {
  if (grad_var_) {
209 210 211 212 213 214 215 216 217 218 219 220 221
    if (grad_var_->var_.IsType<framework::SelectedRows>()) {
      auto* grad_t = grad_var_->var_.GetMutable<framework::SelectedRows>();
      if (grad_t->mutable_value()->IsInitialized()) {
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
      auto* grad_t = grad_var_->var_.GetMutable<framework::LoDTensor>();
      if (grad_t->IsInitialized()) {
        auto* dev_ctx =
            platform::DeviceContextPool::Instance().Get(grad_t->place());
        operators::math::set_constant(*dev_ctx, grad_t, 0.0);
      }
222 223
    }
  }
J
Jiabin Yang 已提交
224
}
225

J
Jiabin Yang 已提交
226
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
227
                                             const bool blocking) const {
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  PADDLE_ENFORCE_EQ(
      var_.IsInitialized() && (var_.IsType<framework::LoDTensor>() ||
                               var_.IsType<framework::SelectedRows>()),
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
  if (var_.IsType<framework::LoDTensor>()) {
    auto& src_tensor = var_.Get<framework::LoDTensor>();

    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));

    auto* dst_tensor = new_var->var_.GetMutable<framework::LoDTensor>();
    dst_tensor->set_lod(src_tensor.lod());

    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
251
    }
P
Paddle CI 已提交
252

253 254 255
    if (platform::is_gpu_place(dst_place)) {
      VLOG(3) << "copy tensor " << Name() << " from gpu";
    }
M
minqiyang 已提交
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    return new_var;
  } else {
    auto& src_selected_rows = var_.Get<framework::SelectedRows>();
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
        new_var->var_.GetMutable<framework::SelectedRows>();

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    if (platform::is_gpu_place(dst_place)) {
      VLOG(3) << "copy selected rows " << Name() << " from gpu";
    }
    return new_var;
  }
M
minqiyang 已提交
282
}
J
Jiabin Yang 已提交
283 284
// create OpBase from optype
OpBase::OpBase(size_t id, const std::string& type, const NameVarBaseMap& ins,
H
hong 已提交
285
               const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
J
Jiabin Yang 已提交
286
               const platform::Place& place)
H
hong 已提交
287
    : id_(id), place_(place), attrs_(attrs) {
J
Jiabin Yang 已提交
288 289 290 291
  const auto& info = framework::OpInfoMap::Instance().Get(type);

  // Step 1: Run forward
  if (info.Checker() != nullptr) {
H
hong 已提交
292
    info.Checker()->Check(&attrs_);
J
Jiabin Yang 已提交
293
  }
M
minqiyang 已提交
294

H
hong 已提交
295
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
296

H
hong 已提交
297
  VLOG(3) << "Construct Op: " << type << std::endl;
J
Jiabin Yang 已提交
298
}
299

H
hong 已提交
300 301 302 303 304
void OpBase::CreateOperatorBase() {
  const auto& info = framework::OpInfoMap::Instance().Get(type_);
  if (info.Checker() != nullptr) {
    info.Checker()->Check(&attrs_);
  }
H
hong 已提交
305
  op_ = framework::OpRegistry::CreateOp(type_, {}, {}, {}, false);
H
hong 已提交
306 307
}

J
Jiabin Yang 已提交
308 309 310 311 312
void OpBase::Run(const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  auto* op_kernel = dynamic_cast<framework::OperatorWithKernel*>(op_.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
  auto& info = op_->Info();
  if (info.infer_var_type_) {
H
hong 已提交
313
    RuntimeInferVarTypeContext infer_var_type_ctx(ins, &outs, attrs_);
J
Jiabin Yang 已提交
314
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
315
  }
J
Jiabin Yang 已提交
316 317 318 319
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
      InitializeVariable(var->MutableVar(), var->Type());
320 321
    }
  }
X
Xin Pan 已提交
322

J
Jiabin Yang 已提交
323 324
  VLOG(3) << "Running Op " << Type();
  VLOG(5) << LayerDebugString(Type(), ins, outs);
H
hong 已提交
325 326 327
  framework::RuntimeContext runtime_ctx({}, {});
  auto prepared_op =
      PreparedOp::Prepare(ins, outs, *op_kernel, place(), &attrs_);
328

H
hong 已提交
329
  prepared_op.Run(&ins, &outs, &attrs_);
330

J
Jiabin Yang 已提交
331
  VLOG(4) << LayerDebugString(Type(), ins, outs);
332 333
}

J
Jiabin Yang 已提交
334 335 336 337
void OpBase::ClearBackwardTrace() {
  grad_pending_ops_.clear();
  ins_.clear();
  outs_.clear();
338 339 340 341
}

}  // namespace imperative
}  // namespace paddle