split_op_plugin.cu 10.7 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

H
hjchen2 已提交
15 16
#include <cuda_fp16.h>
#include <algorithm>
N
nhzlx 已提交
17
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
N
nhzlx 已提交
18
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
19 20 21 22

namespace paddle {
namespace inference {
namespace tensorrt {
23
namespace plugin {
N
nhzlx 已提交
24

N
nhzlx 已提交
25 26 27 28 29
SplitPlugin* CreateSplitPluginDeserialize(const void* buffer, size_t length) {
  return new SplitPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("split_plugin", CreateSplitPluginDeserialize);

H
hjchen2 已提交
30
template <typename T>
31 32 33 34 35 36 37 38 39 40
__device__ int upper_bound(T const* vals, int n, T const& key) {
  int i = 0;
  while (n > 0) {
    int m = n / 2;
    int j = i + m;
    if (!(key < vals[j])) {
      i = j + 1;
      n -= m + 1;
    } else {
      n = m;
H
hjchen2 已提交
41 42
    }
  }
43
  return i;
H
hjchen2 已提交
44 45
}

46 47
nvinfer1::Dims SplitPlugin::getOutputDimensions(
    int index, const nvinfer1::Dims* input_dims, int num_inputs) {
48 49 50 51 52 53 54 55 56 57 58
  PADDLE_ENFORCE_EQ(num_inputs, 1,
                    platform::errors::InvalidArgument(
                        "Invalid number of inputs of split TRT plugin. "
                        "Expected 1, received %d.",
                        num_inputs));
  PADDLE_ENFORCE_LT(
      index, this->getNbOutputs(),
      platform::errors::InvalidArgument(
          "Index of output should be less than the total number of outputs in "
          "split TensorRT plugin. Received index = %d >= total outputs = %d",
          index, this->getNbOutputs()));
59 60

  nvinfer1::Dims output_dims = input_dims[0];
61
  output_dims.d[axis_] = output_length_.at(index);
N
nhzlx 已提交
62 63 64 65
  return output_dims;
}

int SplitPlugin::initialize() {
66 67 68 69 70
  PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS,
                    platform::errors::InvalidArgument(
                        "Axis dimension exceeds max dimension in TensorRT. "
                        "Received axis = %d > MAX_DIMS = %d",
                        axis_, nvinfer1::Dims::MAX_DIMS));
H
hjchen2 已提交
71 72 73 74 75 76 77 78 79 80 81
  // notice input dims is [C, H, W]
  nvinfer1::Dims dims = this->getInputDims(0);
  outer_rows_ = 1;
  inner_cols_ = 1;
  for (int i = 0; i < axis_; ++i) {
    outer_rows_ *= dims.d[i];
  }
  for (int i = axis_ + 1; i < dims.nbDims; ++i) {
    inner_cols_ *= dims.d[i];
  }
  same_shape_ = true;
N
nhzlx 已提交
82 83
  std::vector<int> segment_offsets(1, 0);
  for (int i = 0; i < this->getNbOutputs(); ++i) {
H
hjchen2 已提交
84 85 86
    if (output_length_[i] != output_length_[0]) {
      same_shape_ = false;
    }
87
    segment_offsets.push_back(segment_offsets.back() + output_length_[i]);
N
nhzlx 已提交
88
  }
89
  axis_shape_ = dims.d[axis_];
H
hjchen2 已提交
90 91 92 93 94 95
  d_segment_offsets_ = segment_offsets;
  segment_offsets_ = std::move(segment_offsets);
  d_output_ptrs_.resize(this->getNbOutputs(), nullptr);
  return 0;
}

96 97
// The following part of the code refers to onnx-tensorrt
// https://github.com/onnx/onnx-tensorrt/blob/master/Split.cu
H
hjchen2 已提交
98
template <typename T>
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
__global__ void split_kernel(int nsegment,
                             int const* __restrict__ segment_offsets,
                             T const* __restrict__ idata, T* const* odatas,
                             int inner_cols, int axis_shape, int outer_rows) {
  int x0 = threadIdx.x + blockIdx.x * blockDim.x;
  int src_y0 = threadIdx.y + blockIdx.y * blockDim.y;
  int z0 = threadIdx.z + blockIdx.z * blockDim.z;
  for (int z = z0; z < outer_rows; z += blockDim.z * gridDim.z) {
    for (int src_y = src_y0; src_y < axis_shape;
         src_y += blockDim.y * gridDim.y) {
      for (int x = x0; x < inner_cols; x += blockDim.x * gridDim.x) {
        int segment = upper_bound(segment_offsets, nsegment, src_y) - 1;
        int dst_y = src_y - segment_offsets[segment];
        int dst_ny = segment_offsets[segment + 1] - segment_offsets[segment];
        odatas[segment][x + inner_cols * (dst_y + dst_ny * z)] =
            idata[x + inner_cols * (src_y + axis_shape * z)];
      }
    }
N
nhzlx 已提交
117 118 119 120 121
  }
}

int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
                         void** outputs, void* workspace, cudaStream_t stream) {
122 123
  const int* d_segment_offsets_ptr =
      thrust::raw_pointer_cast(&d_segment_offsets_[0]);
H
hjchen2 已提交
124
  float const* input_ptr = reinterpret_cast<float const*>(inputs[0]);
125 126
  float* const* h_odatas = reinterpret_cast<float* const*>(outputs);
  float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs_[0]);
127 128 129
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpyAsync(
      output_ptrs, h_odatas, d_output_ptrs_.size() * sizeof(float*),
      cudaMemcpyHostToDevice, stream));
130 131 132 133 134 135 136 137 138 139 140

  int outer_rows = outer_rows_ * batchSize;

  dim3 block(32, 16);
  dim3 grid(std::min((inner_cols_ - 1) / block.x + 1, 65535u),
            std::min((axis_shape_ - 1) / block.y + 1, 65535u),
            std::min((outer_rows_ - 1) / block.z + 1, 65535u));

  split_kernel<<<grid, block, 0, stream>>>(
      d_segment_offsets_.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
      inner_cols_, axis_shape_, outer_rows);
N
nhzlx 已提交
141 142 143
  return cudaGetLastError() != cudaSuccess;
}

144 145 146 147
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
int SplitPluginDynamic::initialize() { return 0; }

148 149 150 151
size_t SplitPluginDynamic::getSerializationSize() const {
  return SerializedSize(axis_) + SerializedSize(output_length_) +
         SerializedSize(with_fp16_);
}
152

153 154 155 156 157
void SplitPluginDynamic::serialize(void* buffer) const {
  SerializeValue(&buffer, axis_);
  SerializeValue(&buffer, output_length_);
  SerializeValue(&buffer, with_fp16_);
}
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

nvinfer1::DimsExprs SplitPluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder) {
  PADDLE_ENFORCE_EQ(nb_inputs, 1,
                    platform::errors::InvalidArgument(
                        "The Split plugin should be only one input."));
  PADDLE_ENFORCE_LT(output_index, output_length_.size(),
                    platform::errors::InvalidArgument(
                        "When GetOutputDimensions, the index(%d) should not "
                        "greater the num(%d) of the outpus.",
                        output_index, output_length_.size()));

  nvinfer1::DimsExprs output_dims = inputs[0];
  output_dims.d[axis_] = expr_builder.constant(output_length_.at(output_index));

  return output_dims;
}

bool SplitPluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc* in_out, int nb_inputs,
    int nb_outputs) {
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
182
                  "The input of split plugin should not be nullptr."));
183 184 185 186 187 188 189 190 191 192

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));
  (in_out && pos < (nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc& in = in_out[pos];
  if (pos == 0) {
193 194 195 196 197 198 199 200
    if (with_fp16_) {
      return (in.type == nvinfer1::DataType::kFLOAT ||
              in.type == nvinfer1::DataType::kHALF) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
    } else {
      return (in.type == nvinfer1::DataType::kFLOAT) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
    }
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  }
  const nvinfer1::PluginTensorDesc& prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType SplitPluginDynamic::getOutputDataType(
    int index, const nvinfer1::DataType* input_types, int nb_inputs) const {
  return input_types[0];
}

int SplitPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
                                const nvinfer1::PluginTensorDesc* output_desc,
                                const void* const* inputs, void* const* outputs,
                                void* workspace, cudaStream_t stream) {
  auto input_dims = input_desc[0].dims;
  int outer_rows = 1;
  int inner_cols = 1;
  // with batch
  for (int i = 0; i < axis_; i++) {
    outer_rows *= input_dims.d[i];
  }

  for (int i = axis_ + 1; i < input_dims.nbDims; i++) {
    inner_cols *= input_dims.d[i];
  }

  std::vector<int> segment_offsets(1, 0);
  for (int i = 0; i < this->getNbOutputs(); i++) {
    segment_offsets.push_back(segment_offsets.back() + output_length_[i]);
  }
  int axis_shape = input_dims.d[axis_];
  thrust::device_vector<int> d_segment_offsets = segment_offsets;
  const int* d_segment_offsets_ptr =
      thrust::raw_pointer_cast(&d_segment_offsets[0]);

  dim3 block(32, 16);
  dim3 grid(std::min((inner_cols - 1) / block.x + 1, 65535u),
            std::min((axis_shape - 1) / block.y + 1, 65535u),
            std::min((outer_rows - 1) / block.z + 1, 65535u));

  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
244
    VLOG(1) << "TRT Plugin DataType selected. Split-->fp32";
245 246 247 248 249 250 251
    thrust::device_vector<float*> d_output_ptrs;
    d_output_ptrs.resize(this->getNbOutputs(), nullptr);

    const float* input_ptr = static_cast<const float*>(inputs[0]);
    float* const* h_odatas = reinterpret_cast<float* const*>(outputs);
    float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs[0]);

252 253 254
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpyAsync(
        output_ptrs, h_odatas, d_output_ptrs.size() * sizeof(float*),
        cudaMemcpyHostToDevice, stream));
255 256 257 258 259

    split_kernel<<<grid, block, 0, stream>>>(
        d_segment_offsets.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
        inner_cols, axis_shape, outer_rows);
  } else if (input_type == nvinfer1::DataType::kHALF) {
260
    VLOG(1) << "TRT Plugin DataType selected. Split-->fp16";
261 262 263 264 265 266 267
    thrust::device_vector<half*> d_output_ptrs;
    d_output_ptrs.resize(this->getNbOutputs(), nullptr);

    const half* input_ptr = static_cast<const half*>(inputs[0]);
    half* const* h_odatas = reinterpret_cast<half* const*>(outputs);
    half** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs[0]);

268 269 270
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpyAsync(
        output_ptrs, h_odatas, d_output_ptrs.size() * sizeof(half*),
        cudaMemcpyHostToDevice, stream));
271 272 273 274 275 276 277 278 279

    split_kernel<<<grid, block, 0, stream>>>(
        d_segment_offsets.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
        inner_cols, axis_shape, outer_rows);
  }
  return cudaGetLastError() != cudaSuccess;
}
#endif

280 281 282 283
}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle