layer_helper_base.py 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import copy
import numpy as np

J
Jiabin Yang 已提交
20
from .framework import Variable, default_main_program, default_startup_program, _non_static_mode, _current_expected_place, _in_eager_without_dygraph_check
21 22 23
from . import unique_name
from .param_attr import ParamAttr, WeightNormParamAttr
from . import core
24
from .initializer import _global_weight_initializer, _global_bias_initializer
25

26 27
__all__ = ['LayerHelperBase']

28 29

class LayerHelperBase(object):
30 31 32
    # global dtype
    __dtype = "float32"

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    def __init__(self, name, layer_type):
        self._layer_type = layer_type
        self._name = name

    @property
    def name(self):
        return self._name

    @property
    def layer_type(self):
        return self._layer_type

    @property
    def main_program(self):
        return default_main_program()

    @property
    def startup_program(self):
        return default_startup_program()

53 54 55 56 57 58 59 60
    @classmethod
    def set_default_dtype(cls, dtype):
        cls.__dtype = dtype

    @classmethod
    def get_default_dtype(cls):
        return cls.__dtype

61
    def to_variable(self, value, name=None):
62
        r"""
63 64 65 66 67 68 69 70 71 72
        The API will create a ``Variable`` object from numpy\.ndarray or Variable object.

        Parameters:
            value(ndarray): The numpy\.ndarray object that needs to be converted, it can be multi-dimension, and the data type is one of numpy\.{float16, float32, float64, int16, int32, int64, uint8, uint16}.
            name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

        Returns:
            Variable: ``Tensor`` created from the specified numpy\.ndarray object, data type and shape is the same as ``value`` .

        Examples:
73

74 75 76 77 78 79 80 81
         .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid

            with fluid.dygraph.guard():
                x = np.ones([2, 2], np.float32)
                y = fluid.dygraph.to_variable(x)
82 83 84

        """
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
85
            if _in_eager_without_dygraph_check():
86 87 88
                return core.eager.Tensor(value, _current_expected_place(),
                                         False, False, name if name else None,
                                         True)
89
            else:
90 91 92 93 94
                py_var = core.VarBase(value=value,
                                      name=name if name else '',
                                      persistable=False,
                                      place=_current_expected_place(),
                                      zero_copy=False)
95
                return py_var
J
Jiabin Yang 已提交
96
        elif isinstance(value, (core.VarBase, Variable, core.eager.Tensor)):
97
            return value
98 99
        else:
            raise TypeError(
100 101
                "The type of input value is invalid, expected type is 'ndarray' or 'Variable', but received %s"
                % type(value))
102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def _create_weight_normalize(self, attr, shape, dtype):
        from .layers import elementwise_mul, elementwise_div, reshape

        # Remove these ops when LayerHelper and layers support indicating
        # program and block.
        def __norm_op(x,
                      out=None,
                      p=2,
                      dim=None,
                      keep_dim=False,
                      block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
116
                    name=unique_name.generate_with_ignorable_key(".".join(
117 118 119 120
                        [self.name, 'weight_norm_norm'])),
                    dtype=dtype,
                    persistable=False)
            abs_out = block.create_var(
121
                name=unique_name.generate_with_ignorable_key(".".join(
122 123 124
                    [self.name, 'weight_norm_abs'])),
                dtype=dtype,
                persistable=False)
125 126 127
            block.append_op(type='abs',
                            inputs={'X': x},
                            outputs={'Out': abs_out})
128
            pow_out = block.create_var(
129
                name=unique_name.generate_with_ignorable_key(".".join(
130 131 132
                    [self.name, 'weight_norm_pow'])),
                dtype=dtype,
                persistable=False)
133 134 135 136
            block.append_op(type='pow',
                            inputs={'X': abs_out},
                            outputs={'Out': pow_out},
                            attrs={'factor': float(p)})
137
            sum_out = block.create_var(
138
                name=unique_name.generate_with_ignorable_key(".".join(
139 140 141
                    [self.name, 'weight_norm_sum'])),
                dtype=dtype,
                persistable=False)
142 143 144 145 146 147 148 149 150 151 152 153
            block.append_op(type='reduce_sum',
                            inputs={'X': pow_out},
                            outputs={'Out': sum_out},
                            attrs={
                                'dim': dim,
                                'keep_dim': keep_dim,
                                'reduce_all': True if dim is None else False
                            })
            block.append_op(type='pow',
                            inputs={'X': sum_out},
                            outputs={'Out': out},
                            attrs={'factor': 1. / p})
154 155 156 157 158 159 160 161
            return out

        def __reshape_op(x,
                         shape,
                         out=None,
                         block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
162
                    name=unique_name.generate_with_ignorable_key(".".join(
163 164 165
                        [self.name, 'weight_norm_reshape'])),
                    dtype=dtype,
                    persistable=False)
166 167 168 169
            block.append_op(type='reshape',
                            inputs={'X': x},
                            outputs={'Out': out},
                            attrs={'shape': shape})
170 171 172 173 174 175 176 177
            return out

        def __transpose_op(x,
                           axis,
                           out=None,
                           block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
178
                    name=unique_name.generate_with_ignorable_key(".".join(
179 180 181
                        [self.name, 'weight_norm_transpose'])),
                    dtype=dtype,
                    persistable=False)
182 183 184 185
            block.append_op(type='transpose',
                            inputs={'X': x},
                            outputs={'Out': out},
                            attrs={'axis': axis})
186 187 188 189 190 191 192 193 194
            return out

        def __norm_except_dim(x,
                              out=None,
                              dim=None,
                              block=self.startup_program.global_block()):
            """Computes the norm over all dimensions except dim"""
            if out is None:
                out = block.create_var(
195
                    name=unique_name.generate_with_ignorable_key(".".join(
196 197 198 199 200 201 202 203
                        [self.name, 'weight_norm_norm'])),
                    dtype=dtype,
                    persistable=False)
            if dim is None:
                __norm_op(x, out, dim=dim, block=block)
            elif dim == 0:
                out_shape = [x.shape[0]] + [1] * (len(x.shape) - 1)
                reshape = __reshape_op(x, shape=[x.shape[0], -1], block=block)
204
                norm = __norm_op(reshape, dim=[1], block=block)
205 206 207 208
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            elif dim == len(x.shape) - 1:
                out_shape = [1] * (len(x.shape) - 1) + [x.shape[-1]]
                reshape = __reshape_op(x, shape=[-1, x.shape[-1]], block=block)
209
                norm = __norm_op(reshape, dim=[0], block=block)
210 211 212 213 214
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            else:
                perm = list(range(len(x.shape)))
                perm[0], perm[dim] = dim, 0
                transpose = __transpose_op(x, perm, block=block)
215 216 217 218 219
                out_shape = [transpose.shape[0]
                             ] + [1] * (len(transpose.shape) - 1)
                reshape = __reshape_op(transpose,
                                       shape=[transpose.shape[0], -1],
                                       block=block)
220 221 222
                norm = __norm_op(reshape, dim=[1], block=block)
                reshape2 = __reshape_op(norm, shape=out_shape, block=block)
                __transpose_op(reshape2, perm, out=out, block=block)
223 224 225 226
            return out

        def __weight_normalize(g, v, dim):
            """Calculations for weight normalization"""
227 228 229
            norm = __norm_except_dim(v,
                                     dim=dim,
                                     block=self.main_program.current_block())
230 231 232 233
            scale = elementwise_div(
                x=g, y=norm)  # The shapes of g and norm are the same.
            # Currently, elementwise_mul only support broadcast when the shape
            # of y is a subset of the shape of x. Thus, we reshape y to squeeze
234
            # to achieve the subset.
235 236 237 238
            w = elementwise_mul(x=v,
                                y=scale if dim is None else reshape(
                                    x=scale, shape=[v.shape[dim]]),
                                axis=-1 if dim is None else dim)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
            # To serialize the original parameter for inference, maybe a
            # parameter rather than a variable should be returned.
            return w

        g_param_attr = copy.deepcopy(attr)
        g_param_attr.name = attr.name + '_g'
        g_param_shape = [1] * len(shape)
        if attr.dim is not None:
            g_param_shape[attr.dim] = shape[attr.dim]
        v_param_attr = copy.deepcopy(attr)
        v_param_attr.name = attr.name + '_v'
        v_param_shape = shape

        # Add to startup_program to initialize g and v.
        # Try to reconstruct the initializer of w by initializing g and v.
        # Set the initializers of g and v as below, then the distribution
        # of w is the same as initializing w with the given initializer.
        # For Data-Dependent Initialization, please compute the init-values
        # of g and v in external and then feed the values to g and v by
        # executing an extra program.
        g_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=g_param_shape,
            **g_param_attr._to_kwargs(with_initializer=False))
        v_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=v_param_shape,
            **v_param_attr._to_kwargs(with_initializer=True))
267 268 269 270
        __norm_except_dim(x=v_param,
                          out=g_param,
                          dim=attr.dim,
                          block=self.startup_program.global_block())
271

272
        # keep g_param shape to be consistent with that in main_program
273 274 275 276
        __reshape_op(g_param,
                     g_param_shape,
                     out=g_param,
                     block=self.startup_program.global_block())
277

278 279 280 281 282 283 284 285 286 287 288 289
        # Add weight normalization to main_program
        g_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=g_param_shape, **g_param_attr._to_kwargs())
        v_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=v_param_shape, **v_param_attr._to_kwargs())
        w_param = __weight_normalize(g_param, v_param, dim=attr.dim)
        return w_param

    # TODO: hide the func after we move the layers to Layers
    def create_parameter(self,
                         attr,
                         shape,
290
                         dtype=None,
291
                         is_bias=False,
292
                         default_initializer=None,
293 294
                         stop_gradient=False,
                         type=core.VarDesc.VarType.LOD_TENSOR):
295 296 297 298
        """Create parameters for this layers.

           Args:
               attr: [ParamAttr] should be the parameter attribute for this parameter
T
tianshuo78520a 已提交
299
               shape: shape of the parameter
300 301 302 303 304 305 306 307
               dtype: data type of this parameter
               is_bias: if this is a bias parameter
               default_initializer: set the default initializer for this parameter

        Returns created parameter Variable.
        """
        # Deepcopy the attr so that parameters can be shared in program
        attr = copy.deepcopy(attr)
308
        attr = ParamAttr._to_attr(attr)
309 310
        if not attr:
            return None
311
        assert isinstance(attr, ParamAttr)
312
        for i, size in enumerate(shape):
313 314 315
            assert size > 0, ("Expected every dim's size to be larger than 0, "
                              "but the size of the {}-th dim is {}".format(
                                  i, size))
316 317 318
        # set global dtype
        if not dtype:
            dtype = self.__dtype
319 320 321 322 323 324 325 326 327
        if is_bias:
            suffix = 'b'
            default_initializer = _global_bias_initializer(
            ) if _global_bias_initializer() is not None else default_initializer
        else:
            suffix = 'w'
            default_initializer = _global_weight_initializer(
            ) if _global_weight_initializer(
            ) is not None else default_initializer
328 329 330 331 332 333 334
        if attr.name is None:
            attr.name = unique_name.generate(".".join([self.name, suffix]))

        if default_initializer is None and attr.initializer is None:
            if isinstance(dtype, core.VarDesc.VarType):
                if dtype != core.VarDesc.VarType.FP32 and \
                        dtype != core.VarDesc.VarType.FP64 and \
335 336
                        dtype != core.VarDesc.VarType.FP16 and \
                        dtype != core.VarDesc.VarType.BF16:
337 338 339 340
                    raise TypeError(
                        "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
                    )
            else:
341 342
                if not (dtype.startswith("float")
                        or dtype in ["double", "uint16"]):
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
                    raise TypeError(
                        "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
                    )
            if is_bias:
                attr._set_default_bias_initializer()
            else:
                attr._set_default_param_initializer()
        else:
            attr._set_default_initializer(default_initializer)

        # If weight normalization is set, insert extra parameters and ops.
        # Refer to https://arxiv.org/pdf/1602.07868.pdf
        if isinstance(attr, WeightNormParamAttr):
            param = self._create_weight_normalize(attr, shape, dtype)
            WeightNormParamAttr.params_with_weight_norm.append(param)
            return param
J
Jiabin Yang 已提交
359
        if _non_static_mode():
L
lujun 已提交
360
            # In dygraph mode, we want the returned parameter to be
361
            # initialized so that it can be used imperatively.
H
hong 已提交
362 363 364 365 366 367 368 369
            # check parameter name
            is_used = unique_name.dygraph_parameter_name_checker(attr.name)
            if is_used:
                raise ValueError(
                    "parameter name [{}] have be been used. "
                    "In dygraph mode, the name of parameter can't be same."
                    "Please check the parameter attr value passed to self.create_parameter or "
                    "constructor of dygraph Layers".format(attr.name))
370 371 372
            return self.main_program.global_block().create_parameter(
                dtype=dtype,
                shape=shape,
373
                type=type,
374
                stop_gradient=stop_gradient,
375 376 377 378 379
                **attr._to_kwargs(with_initializer=True))
        else:
            self.startup_program.global_block().create_parameter(
                dtype=dtype,
                shape=shape,
380
                type=type,
381 382
                **attr._to_kwargs(with_initializer=True))
            return self.main_program.global_block().create_parameter(
383
                dtype=dtype, shape=shape, type=type, **attr._to_kwargs())
384

385 386 387 388
    def create_variable_for_type_inference(self,
                                           dtype,
                                           stop_gradient=False,
                                           shape=None):
389 390 391 392 393 394 395 396
        """Create a temporary variable that should be type inferred layer.

        Note:
            The default type will be set to LOD_TENSOR. However, when
            the var is used as operator output, its type will be updated
            based on operator's `VarTypeInference` implementation in
            infer_var_type.
        """
397 398 399
        # set global dtype
        if not dtype:
            dtype = self.__dtype
400
        return self.main_program.current_block().create_var(
401 402
            name=unique_name.generate_with_ignorable_key(".".join(
                [self.name, 'tmp'])),
403
            dtype=dtype,
404
            shape=shape,
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=stop_gradient)

    def create_variable(self, *args, **kwargs):
        """Create Variable for this layers.
        Returns created Variable.
        """
        return self.main_program.current_block().create_var(*args, **kwargs)

    def create_global_variable(self, persistable=False, *args, **kwargs):
        """
        create global variable, note that there is no initializer for this global variable.
        Args:
            persistable(bool): True if it is a checkpoint value.
            *args: See create_var's documentation
            **kwargs: See create_var's documentation

        Returns(Variable): the created variable.
        """
        return self.main_program.global_block().create_var(
            *args, persistable=persistable, **kwargs)

    def create_or_get_global_variable(self, name, *args, **kwargs):
        """
        Creates a global variable if not exists and returns the variable and
        a boolean flag which is true when it is a new variable.
        """
        if self.main_program.global_block().has_var(name):
            return self.main_program.global_block().var(name), False
        else:
            return self.create_global_variable(name=name, *args, **kwargs), True

    def set_variable_initializer(self, var, initializer):
        """Set target Variable's initializer

           Args:
               var: target Variable
               initializer: initializer to use
        """
        assert isinstance(var, Variable)
J
Jiabin Yang 已提交
446
        if _non_static_mode():
447
            initializer(var, self.main_program.global_block())
448 449 450 451 452 453 454 455
        else:
            self.startup_program.global_block().create_var(
                name=var.name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
                persistable=True,
                initializer=initializer)