layer_helper_base.py 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import copy
import numpy as np

L
lujun 已提交
20
from .framework import Variable, default_main_program, default_startup_program, in_dygraph_mode, _current_expected_place
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
from . import unique_name
from .param_attr import ParamAttr, WeightNormParamAttr
from . import core


class LayerHelperBase(object):
    def __init__(self, name, layer_type):
        self._layer_type = layer_type
        self._name = name

    @property
    def name(self):
        return self._name

    @property
    def layer_type(self):
        return self._layer_type

    @property
    def main_program(self):
        return default_main_program()

    @property
    def startup_program(self):
        return default_startup_program()

47 48 49 50 51 52 53 54 55 56 57 58
    def to_variable(self, value, name=None):
        """
        The API will create a ``Variable`` object from numpy\.ndarray or Variable object.

        Parameters:
            value(ndarray): The numpy\.ndarray object that needs to be converted, it can be multi-dimension, and the data type is one of numpy\.{float16, float32, float64, int16, int32, int64, uint8, uint16}.
            name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

        Returns:
            Variable: ``Tensor`` created from the specified numpy\.ndarray object, data type and shape is the same as ``value`` .

        Examples:
59

60 61 62 63 64 65 66 67
         .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid

            with fluid.dygraph.guard():
                x = np.ones([2, 2], np.float32)
                y = fluid.dygraph.to_variable(x)
68 69 70

        """
        if isinstance(value, np.ndarray):
L
lujun 已提交
71
            assert in_dygraph_mode(
L
lujun 已提交
72
            ), "to_variable could only be called in dygraph mode"
73 74
            py_var = core.VarBase(
                value=value,
L
Leo Chen 已提交
75
                name=name if name else '',
76 77 78
                persistable=False,
                place=_current_expected_place(),
                zero_copy=False)
79
            return py_var
80
        elif isinstance(value, (core.VarBase, Variable)):
81
            return value
82 83 84 85
        else:
            raise TypeError(
                "to_variable only accepts 'ndarray' or 'Variable' or 'VarBase' as value's input"
            )
86 87 88 89 90 91 92 93 94 95 96 97 98 99

    def _create_weight_normalize(self, attr, shape, dtype):
        from .layers import elementwise_mul, elementwise_div, reshape

        # Remove these ops when LayerHelper and layers support indicating
        # program and block.
        def __norm_op(x,
                      out=None,
                      p=2,
                      dim=None,
                      keep_dim=False,
                      block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
100
                    name=unique_name.generate_with_ignorable_key(".".join(
101 102 103 104
                        [self.name, 'weight_norm_norm'])),
                    dtype=dtype,
                    persistable=False)
            abs_out = block.create_var(
105
                name=unique_name.generate_with_ignorable_key(".".join(
106 107 108 109 110 111
                    [self.name, 'weight_norm_abs'])),
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='abs', inputs={'X': x}, outputs={'Out': abs_out})
            pow_out = block.create_var(
112
                name=unique_name.generate_with_ignorable_key(".".join(
113 114 115 116 117 118 119 120 121
                    [self.name, 'weight_norm_pow'])),
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='pow',
                inputs={'X': abs_out},
                outputs={'Out': pow_out},
                attrs={'factor': float(p)})
            sum_out = block.create_var(
122
                name=unique_name.generate_with_ignorable_key(".".join(
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
                    [self.name, 'weight_norm_sum'])),
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': dim,
                    'keep_dim': keep_dim,
                    'reduce_all': True if dim is None else False
                })
            block.append_op(
                type='pow',
                inputs={'X': sum_out},
                outputs={'Out': out},
                attrs={'factor': 1. / p})
            return out

        def __reshape_op(x,
                         shape,
                         out=None,
                         block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
148
                    name=unique_name.generate_with_ignorable_key(".".join(
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                        [self.name, 'weight_norm_reshape'])),
                    dtype=dtype,
                    persistable=False)
            block.append_op(
                type='reshape',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'shape': shape})
            return out

        def __transpose_op(x,
                           axis,
                           out=None,
                           block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
165
                    name=unique_name.generate_with_ignorable_key(".".join(
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
                        [self.name, 'weight_norm_transpose'])),
                    dtype=dtype,
                    persistable=False)
            block.append_op(
                type='transpose',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'axis': axis})
            return out

        def __norm_except_dim(x,
                              out=None,
                              dim=None,
                              block=self.startup_program.global_block()):
            """Computes the norm over all dimensions except dim"""
            if out is None:
                out = block.create_var(
183
                    name=unique_name.generate_with_ignorable_key(".".join(
184 185 186 187 188 189 190 191
                        [self.name, 'weight_norm_norm'])),
                    dtype=dtype,
                    persistable=False)
            if dim is None:
                __norm_op(x, out, dim=dim, block=block)
            elif dim == 0:
                out_shape = [x.shape[0]] + [1] * (len(x.shape) - 1)
                reshape = __reshape_op(x, shape=[x.shape[0], -1], block=block)
192
                norm = __norm_op(reshape, dim=[1], block=block)
193 194 195 196
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            elif dim == len(x.shape) - 1:
                out_shape = [1] * (len(x.shape) - 1) + [x.shape[-1]]
                reshape = __reshape_op(x, shape=[-1, x.shape[-1]], block=block)
197
                norm = __norm_op(reshape, dim=[0], block=block)
198 199 200 201 202
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            else:
                perm = list(range(len(x.shape)))
                perm[0], perm[dim] = dim, 0
                transpose = __transpose_op(x, perm, block=block)
203 204 205 206 207 208 209
                out_shape = [transpose.shape[0]] + [1] * (len(transpose.shape) -
                                                          1)
                reshape = __reshape_op(
                    transpose, shape=[transpose.shape[0], -1], block=block)
                norm = __norm_op(reshape, dim=[1], block=block)
                reshape2 = __reshape_op(norm, shape=out_shape, block=block)
                __transpose_op(reshape2, perm, out=out, block=block)
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
            return out

        def __weight_normalize(g, v, dim):
            """Calculations for weight normalization"""
            norm = __norm_except_dim(
                v, dim=dim, block=self.main_program.current_block())
            scale = elementwise_div(
                x=g, y=norm)  # The shapes of g and norm are the same.
            # Currently, elementwise_mul only support broadcast when the shape
            # of y is a subset of the shape of x. Thus, we reshape y to squeeze
            # to achive the subset.
            w = elementwise_mul(
                x=v,
                y=scale if dim is None else reshape(
                    x=scale, shape=[v.shape[dim]]),
                axis=-1 if dim is None else dim)
            # To serialize the original parameter for inference, maybe a
            # parameter rather than a variable should be returned.
            return w

        g_param_attr = copy.deepcopy(attr)
        g_param_attr.name = attr.name + '_g'
        g_param_shape = [1] * len(shape)
        if attr.dim is not None:
            g_param_shape[attr.dim] = shape[attr.dim]
        v_param_attr = copy.deepcopy(attr)
        v_param_attr.name = attr.name + '_v'
        v_param_shape = shape

        # Add to startup_program to initialize g and v.
        # Try to reconstruct the initializer of w by initializing g and v.
        # Set the initializers of g and v as below, then the distribution
        # of w is the same as initializing w with the given initializer.
        # For Data-Dependent Initialization, please compute the init-values
        # of g and v in external and then feed the values to g and v by
        # executing an extra program.
        g_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=g_param_shape,
            **g_param_attr._to_kwargs(with_initializer=False))
        v_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=v_param_shape,
            **v_param_attr._to_kwargs(with_initializer=True))
        __norm_except_dim(
            x=v_param,
            out=g_param,
            dim=attr.dim,
            block=self.startup_program.global_block())

260 261 262 263 264 265 266
        # keep g_param shape to be consistent with that in main_program
        __reshape_op(
            g_param,
            g_param_shape,
            out=g_param,
            block=self.startup_program.global_block())

267 268 269 270 271 272 273 274 275 276 277 278 279 280
        # Add weight normalization to main_program
        g_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=g_param_shape, **g_param_attr._to_kwargs())
        v_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=v_param_shape, **v_param_attr._to_kwargs())
        w_param = __weight_normalize(g_param, v_param, dim=attr.dim)
        return w_param

    # TODO: hide the func after we move the layers to Layers
    def create_parameter(self,
                         attr,
                         shape,
                         dtype,
                         is_bias=False,
281
                         default_initializer=None,
282 283
                         stop_gradient=False,
                         type=core.VarDesc.VarType.LOD_TENSOR):
284 285 286 287
        """Create parameters for this layers.

           Args:
               attr: [ParamAttr] should be the parameter attribute for this parameter
T
tianshuo78520a 已提交
288
               shape: shape of the parameter
289 290 291 292 293 294 295 296
               dtype: data type of this parameter
               is_bias: if this is a bias parameter
               default_initializer: set the default initializer for this parameter

        Returns created parameter Variable.
        """
        # Deepcopy the attr so that parameters can be shared in program
        attr = copy.deepcopy(attr)
297
        attr = ParamAttr._to_attr(attr)
298 299
        if not attr:
            return None
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        assert isinstance(attr, ParamAttr)
        suffix = 'b' if is_bias else 'w'
        if attr.name is None:
            attr.name = unique_name.generate(".".join([self.name, suffix]))

        if default_initializer is None and attr.initializer is None:
            if isinstance(dtype, core.VarDesc.VarType):
                if dtype != core.VarDesc.VarType.FP32 and \
                        dtype != core.VarDesc.VarType.FP64 and \
                        dtype != core.VarDesc.VarType.FP16:
                    raise TypeError(
                        "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
                    )
            else:
                if not (dtype.startswith("float") or dtype == "double"):
                    raise TypeError(
                        "Can not create parameter with default initializer when dtype is not float type. Set default_initializer to fit the parameter dtype!"
                    )
            if is_bias:
                attr._set_default_bias_initializer()
            else:
                attr._set_default_param_initializer()
        else:
            attr._set_default_initializer(default_initializer)

        # If weight normalization is set, insert extra parameters and ops.
        # Refer to https://arxiv.org/pdf/1602.07868.pdf
        if isinstance(attr, WeightNormParamAttr):
            param = self._create_weight_normalize(attr, shape, dtype)
            WeightNormParamAttr.params_with_weight_norm.append(param)
            return param
L
lujun 已提交
331
        if in_dygraph_mode():
L
lujun 已提交
332
            # In dygraph mode, we want the returned parameter to be
333
            # initialized so that it can be used imperatively.
H
hong 已提交
334 335 336 337 338 339 340 341
            # check parameter name
            is_used = unique_name.dygraph_parameter_name_checker(attr.name)
            if is_used:
                raise ValueError(
                    "parameter name [{}] have be been used. "
                    "In dygraph mode, the name of parameter can't be same."
                    "Please check the parameter attr value passed to self.create_parameter or "
                    "constructor of dygraph Layers".format(attr.name))
342 343 344
            return self.main_program.global_block().create_parameter(
                dtype=dtype,
                shape=shape,
345
                type=type,
346
                stop_gradient=stop_gradient,
347 348 349 350 351
                **attr._to_kwargs(with_initializer=True))
        else:
            self.startup_program.global_block().create_parameter(
                dtype=dtype,
                shape=shape,
352
                type=type,
353 354
                **attr._to_kwargs(with_initializer=True))
            return self.main_program.global_block().create_parameter(
355
                dtype=dtype, shape=shape, type=type, **attr._to_kwargs())
356 357 358 359 360 361 362 363 364 365 366

    def create_variable_for_type_inference(self, dtype, stop_gradient=False):
        """Create a temporary variable that should be type inferred layer.

        Note:
            The default type will be set to LOD_TENSOR. However, when
            the var is used as operator output, its type will be updated
            based on operator's `VarTypeInference` implementation in
            infer_var_type.
        """
        return self.main_program.current_block().create_var(
367 368
            name=unique_name.generate_with_ignorable_key(".".join(
                [self.name, 'tmp'])),
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
            dtype=dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=stop_gradient)

    def create_variable(self, *args, **kwargs):
        """Create Variable for this layers.
        Returns created Variable.
        """
        return self.main_program.current_block().create_var(*args, **kwargs)

    def create_global_variable(self, persistable=False, *args, **kwargs):
        """
        create global variable, note that there is no initializer for this global variable.
        Args:
            persistable(bool): True if it is a checkpoint value.
            *args: See create_var's documentation
            **kwargs: See create_var's documentation

        Returns(Variable): the created variable.
        """
        return self.main_program.global_block().create_var(
            *args, persistable=persistable, **kwargs)

    def create_or_get_global_variable(self, name, *args, **kwargs):
        """
        Creates a global variable if not exists and returns the variable and
        a boolean flag which is true when it is a new variable.
        """
        if self.main_program.global_block().has_var(name):
            return self.main_program.global_block().var(name), False
        else:
            return self.create_global_variable(name=name, *args, **kwargs), True

    def set_variable_initializer(self, var, initializer):
        """Set target Variable's initializer

           Args:
               var: target Variable
               initializer: initializer to use
        """
        assert isinstance(var, Variable)
L
lujun 已提交
411
        if in_dygraph_mode():
412
            initializer(var, self.main_program.global_block())
413 414 415 416 417 418 419 420
        else:
            self.startup_program.global_block().create_var(
                name=var.name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
                persistable=True,
                initializer=initializer)