conv_transpose_op.cc 23.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
sneaxiy 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/data_layout.h"
20
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
21

J
Jacek Czaja 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
26 27 28
namespace paddle {
namespace operators {

29 30
using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
31
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
32 33 34
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "ConvTranspose");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "ConvTranspose");
  OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "ConvTranspose");
C
chengduoZH 已提交
35 36 37

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
38 39
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
40 41
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
42
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
43
  int groups = ctx->Attrs().Get<int>("groups");
44 45
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
46 47
  const std::string data_layout_str =
      ctx->Attrs().Get<std::string>("data_format");
48 49 50
  const DataLayout data_layout =
      this->IsMKLDNNType() ? DataLayout::kNCHW
                           : framework::StringToDataLayout(data_layout_str);
C
chengduoZH 已提交
51

52
  PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
53 54 55 56 57
                    platform::errors::InvalidArgument(
                        "Input of Op(conv_transpose) should be 4-D or "
                        "5-D Tensor. But received: %u-D Tensor, "
                        "the shape of input is [%s]",
                        in_dims.size(), in_dims));
58 59
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
60 61 62 63 64 65
      platform::errors::InvalidArgument(
          "The input's dimension size and filter's dimension size of "
          "Op (conv_transpose) should be equal. But received: the shape of "
          "input is [%s], the dimension size of input is [%d], the shape "
          "of filter is [%s],  the dimension size of filter is [%d]. ",
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
66
  int in_sub_stride_size = in_dims.size() - strides.size();
67 68
  PADDLE_ENFORCE_EQ(
      in_dims.size() - strides.size(), 2U,
69 70 71 72 73 74
      platform::errors::InvalidArgument(
          "The input's dimension size minus Attr(stride)'s size must "
          "be euqal to 2 for Op(conv_transpose). But received: [%d], the "
          "input's dimension size is [%d], the shape of input "
          "is [%s], the Attr(stride)'s size is [%d].",
          in_sub_stride_size, in_dims.size(), in_dims, strides.size()));
75
  if (output_size.size())
76 77
    PADDLE_ENFORCE_EQ(
        output_size.size(), strides.size(),
78 79 80
        platform::errors::InvalidArgument(
            "The Attr(output_size) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));
C
chengduoZH 已提交
81

82
  const int64_t C =
83
      (data_layout != DataLayout::kNHWC ? in_dims[1]
84 85 86
                                        : in_dims[in_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C, filter_dims[0],
87 88 89 90 91 92 93
      platform::errors::InvalidArgument(
          "The number of input channels should be equal to filter channels "
          "for Op(conv_transpose). But received: the input's channels is "
          "[%d], the shape of input is [%s], the filter's channels is [%d], "
          "the shape of filter is [%s]. The data_format is %s."
          "The error may come from wrong data_format setting.",
          C, in_dims, filter_dims[0], filter_dims, data_layout_str));
94 95

  framework::DDim in_data_dims;
96
  if (data_layout != DataLayout::kNHWC) {
97 98 99 100 101 102 103 104 105 106 107
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  }
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
108
  if (data_layout != DataLayout::kNHWC) {
109 110
    output_shape.push_back(filter_dims[1] * groups);
  }
111
  const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
C
chengduoZH 已提交
112
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
113
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
114 115 116 117 118
    auto infer_shape = (ctx->IsRuntime() || in_dims[i + offset] > 0)
                           ? (in_dims[i + offset] - 1) * strides[i] -
                                 paddings[2 * i] - paddings[2 * i + 1] +
                                 filter_extent
                           : -1;
119
    if (output_size.size()) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_GE(
            output_size[i], infer_shape,
            platform::errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should not be "
                "less than the infered output size. But received output_size = "
                "[%s], whose dim %d is less than the infered output size [%s]",
                framework::make_ddim(output_size), i, infer_shape));
        PADDLE_ENFORCE_LT(
            output_size[i], infer_shape + strides[i],
            platform::errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should be less "
                "than infered size + stride. But received output_size = [%s], "
                "whose dim %d is not less than the infered output size (%d) + "
                "stride (%d) = %d",
                framework::make_ddim(output_size), i, infer_shape, strides[i],
                infer_shape + strides[i]));
      }
138 139 140 141
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
142
  }
143 144 145
  if (data_layout == DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }
C
chengduoZH 已提交
146
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
147 148
}

149 150
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
151
  framework::LibraryType library_{framework::LibraryType::kPlain};
152
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
153
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
154
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
155 156 157 158
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
159 160 161
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
162 163
  }
#endif
J
Jacek Czaja 已提交
164 165 166 167 168
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
169
  }
J
Jacek Czaja 已提交
170
#endif
171

172 173 174
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
175 176
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
framework::OpKernelType ConvTransposeOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(),
          framework::StringToDataLayout(data_format));
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
203
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
204 205 206 207
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
208 209 210 211 212
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator. "
           "The format of input tensor is NCHW or NHWC. Where N is batch size, "
           "C is the number of input channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
213 214 215 216 217 218 219 220
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
221 222 223 224 225 226
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();

C
chengduoZH 已提交
227
  AddOutput("Output",
C
chengduoZH 已提交
228
            "(Tensor) The output tensor of convolution transpose operator. "
229
            "The format of output tensor is the same as input tensor.");
230 231 232 233
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
234 235 236 237
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
238 239 240 241 242
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
243 244
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
245
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
246
      "convolution transpose operator.")
C
chengduoZH 已提交
247
      .SetDefault({1, 1});
C
chengduoZH 已提交
248 249
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
250
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
251
      "transpose operator.")
C
chengduoZH 已提交
252
      .SetDefault({0, 0});
253 254 255 256
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
257 258 259 260 261
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
262 263 264 265 266 267 268 269
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
270 271 272 273
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
274 275 276 277 278 279 280 281 282
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
283 284 285 286 287
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
T
tianshuo78520a 已提交
288
               "better hardward. This size should be carefully set.")
289
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
290
  AddComment(R"DOC(
C
chengduoZH 已提交
291 292
Convolution2D Transpose Operator.

C
chengduoZH 已提交
293
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
294
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
295
parameters is checked in the infer-shape.
296
Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batchsize, C is the
C
chengduoZH 已提交
297 298 299 300 301 302
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
303
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
304

Y
update  
yi.wu 已提交
305
For an example:
C
chengduoZH 已提交
306
  Input:
C
chengduoZH 已提交
307 308
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
309
  Output:
C
chengduoZH 已提交
310 311 312
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
313 314
       H_{out} = (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom  + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - pad_width_left  - pad_width_right + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
315
  $$
C
chengduoZH 已提交
316 317 318
)DOC");
}

Y
Yu Yang 已提交
319
void Conv3DTransposeOpMaker::Make() {
320 321 322 323 324 325
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator."
      "The format of input tensor is NCDHW or NDHWC. Where N is batch "
      "size, C is the number of channels, D is the depth of the feature, "
      "H is the height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
326 327
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
328 329 330
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
331 332
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
333
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
334
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
335 336
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
337
            "The format of output tensor is the same as input tensor."
C
chengduoZH 已提交
338
            "Where N is batch size, C is "
C
chengduoZH 已提交
339 340
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
341 342 343 344
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
345 346 347 348 349 350
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
351
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
352
                            "(vector<int> default:{1, 1, 1}), the "
353
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
354
                            "convolution transpose operator.")
C
chengduoZH 已提交
355
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
356
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
357
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
358
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
359
      .SetDefault({0, 0, 0});
360 361 362 363
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
364 365 366 367
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
368 369 370
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
371 372 373 374
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
375 376 377 378 379 380 381 382 383
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
384 385 386 387 388
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
T
tianshuo78520a 已提交
389
               "better hardward. This size should be carefully set.")
390
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
391
  AddComment(R"DOC(
C
chengduoZH 已提交
392 393
Convolution3D Transpose Operator.

C
chengduoZH 已提交
394
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
395
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
396
parameters is checked in the infer-shape.
397
Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the
C
chengduoZH 已提交
398 399 400 401 402 403 404
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
405
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
406

407
Example:
C
chengduoZH 已提交
408
  Input:
C
chengduoZH 已提交
409 410
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
411
  Output:
C
chengduoZH 已提交
412 413 414
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
415 416 417
       D_{out} = (D_{in} - 1) * strides[0] - pad_depth_front - pad_depth_back + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - pad_height_top  - pad_height_bottom + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - pad_width_left - pad_width_right + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
418
  $$
C
chengduoZH 已提交
419 420 421
)DOC");
}

C
chengduoZH 已提交
422
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
423 424 425 426 427 428 429 430 431 432
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

433 434 435
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
436
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
437 438 439 440 441 442
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
443 444 445 446 447 448 449
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

450
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
451 452 453
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
454 455
}

H
hong 已提交
456 457
template <typename T>
class ConvTransposeGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
458
 public:
H
hong 已提交
459
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
460 461

 protected:
462
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
463 464 465 466 467 468 469 470
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
471
    }
H
hong 已提交
472 473
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
474 475 476
  }
};

C
chengduoZH 已提交
477 478 479 480
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
481

482
// conv2d_transpose
Y
Yang Yang 已提交
483 484
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
485 486
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
487
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
488 489

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
490
    conv2d_transpose,
Q
QI JUN 已提交
491 492
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
493
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
494
    conv2d_transpose_grad,
Q
QI JUN 已提交
495 496 497
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
498

499
// conv3d_transpose
Y
Yang Yang 已提交
500 501
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
H
hong 已提交
502 503
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
504
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
505 506

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
507
    conv3d_transpose,
Q
QI JUN 已提交
508 509
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
510
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
511
    conv3d_transpose_grad,
Q
QI JUN 已提交
512 513 514
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
515 516 517 518

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
519 520
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
521 522 523 524 525 526 527 528 529 530 531
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);