test_orig2prim.py 35.3 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
from paddle.fluid.layer_helper import LayerHelper
19
from paddle.incubate.autograd.primrules import _orig2prim
20 21 22 23

paddle.enable_static()


24
# ----------------------- Test orig2prim rules ---------------------------- #
25 26 27 28 29 30
class TestElementWiseAddOrig2Prim(unittest.TestCase):
    def setUp(self):
        self.main_program = paddle.static.Program()
        self.startup_program = paddle.static.Program()
        self.layer_help = LayerHelper('TestOrig2Prim')

31 32 33
        with paddle.static.program_guard(
            self.main_program, self.startup_program
        ):
34 35 36 37 38 39 40 41 42
            self.init_data()

    def init_data(self):
        self.op_type = 'elementwise_add'
        X = paddle.static.data(name='X', shape=[2, 2], dtype='float')
        Y = paddle.static.data(name='Y', shape=[2, 2], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
43 44 45
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
46 47 48 49 50 51 52 53 54
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_add', 'add_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}

    def test_op(self):
55 56 57 58 59 60 61 62 63
        with paddle.static.program_guard(
            self.main_program, self.startup_program
        ):
            op = self.layer_help.append_op(
                type=self.op_type,
                inputs=self.input,
                outputs=self.output,
                attrs=self.attrs,
            )
64 65 66 67 68

            prim_out = _orig2prim(op, *self.orig2prim_args)
            all_ops = [op.type for op in self.main_program.block(0).ops]

            self.assertEqual(sorted(all_ops), sorted(self.all_ops))
69
            prim_out = paddle.utils.flatten(prim_out)
70 71 72 73 74 75 76 77 78
            for k, v in self.out_map.items():
                self.assertEqual(prim_out[k].shape, v.shape)


class TestSqrtOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'sqrt'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

79 80 81
        self.input = {
            'X': X,
        }
82
        self.output = {
83 84 85
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
86 87 88
        }
        self.attrs = {}

89
        self.orig2prim_args = (X,)
90 91 92 93 94 95 96 97 98 99 100 101 102
        self.all_ops = ['sqrt', 'sqrt_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestElementWiseMulOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'elementwise_mul'
        X = paddle.static.data(name='X', shape=[8, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[8, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
103 104 105
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
106 107 108 109 110 111 112 113 114
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_mul', 'mul_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


115 116 117 118 119 120 121 122
class TestElementWiseDivOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'elementwise_div'
        X = paddle.static.data(name='X', shape=[8, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[8, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
123 124 125
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
126 127 128 129 130 131 132 133 134
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_div', 'div_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


135 136 137 138 139 140 141 142
class TestMatmulV2Orig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'matmul_v2'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')
        Y = paddle.static.data(name='Y', shape=[4, 3], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
143 144 145
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
146 147 148 149 150 151 152 153 154 155 156 157 158
        }
        self.attrs = {'trans_x': True, 'trans_y': True}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['matmul_v2', 'transpose_p', 'transpose_p', 'matmul_p']
        self.out_map = {0: self.output['Out']}


class TestTanhOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'tanh'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

159 160 161
        self.input = {
            'X': X,
        }
162
        self.output = {
163 164 165
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
166 167 168
        }
        self.attrs = {}

169
        self.orig2prim_args = (X,)
170 171 172 173
        self.all_ops = ['tanh', 'tanh_p']
        self.out_map = {0: self.output['Out']}


174 175 176 177 178 179 180 181 182
class TestSinOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'sin'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
183 184 185
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
186 187 188
        }
        self.attrs = {}

189
        self.orig2prim_args = (X,)
190 191 192 193 194 195 196 197 198 199 200 201 202
        self.all_ops = ['sin', 'sin_p']
        self.out_map = {0: self.output['Out']}


class TestCosOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'cos'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
203 204 205
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
206 207 208
        }
        self.attrs = {}

209
        self.orig2prim_args = (X,)
210 211 212 213 214 215 216 217 218 219 220 221 222
        self.all_ops = ['cos', 'cos_p']
        self.out_map = {0: self.output['Out']}


class TestExpOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'exp'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
223 224 225
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
226 227 228
        }
        self.attrs = {}

229
        self.orig2prim_args = (X,)
230 231 232 233
        self.all_ops = ['exp', 'exp_p']
        self.out_map = {0: self.output['Out']}


234 235 236 237 238 239 240 241 242
class TestErfOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'erf'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
243 244 245
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
246 247 248
        }
        self.attrs = {}

249
        self.orig2prim_args = (X,)
250 251 252 253
        self.all_ops = ['erf', 'erf_p']
        self.out_map = {0: self.output['Out']}


254 255 256 257 258 259 260 261 262
class TestAbsOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'abs'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
263 264 265
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
266 267 268
        }
        self.attrs = {}

269
        self.orig2prim_args = (X,)
270 271 272 273
        self.all_ops = ['abs', 'abs_p']
        self.out_map = {0: self.output['Out']}


274 275 276 277 278 279 280 281 282
class TestLogOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'log'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
283 284 285
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
286 287 288
        }
        self.attrs = {}

289
        self.orig2prim_args = (X,)
290 291 292 293
        self.all_ops = ['log', 'log_p']
        self.out_map = {0: self.output['Out']}


294 295 296 297 298
class TestReshape2Orig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'reshape2'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

299 300 301
        self.input = {
            'X': X,
        }
302
        self.output = {
303 304 305 306
            'Out': X,
            'XShape': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            ),
307 308 309 310 311 312
        }
        self.attrs = {'shape': [6, 5]}

        self.orig2prim_args = (
            None,
            None,
313 314
            X,
        )
315 316 317 318 319 320 321 322 323 324 325
        self.all_ops = ['reshape2', 'reshape_p', 'fill_constant_p']
        # Do not checke XShape
        self.out_map = {0: self.output['Out']}


class TestConcatOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'concat'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[3, 6], dtype='int64')

326 327 328
        self.input = {
            'X': [X, Y],
        }
329
        self.output = {
330 331 332
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
333 334 335 336 337
        }
        self.attrs = {'axis': 0}

        self.orig2prim_args = (
            None,
338 339
            (X, Y),
        )
340 341 342 343 344 345 346 347 348
        self.all_ops = ['concat', 'concat_p']
        self.out_map = {0: self.output['Out']}


class TestSliceOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'slice'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

349 350 351
        self.input = {
            'Input': X,
        }
352
        self.output = {
353 354 355
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        }
        self.attrs = {
            'axes': [0],
            'starts': [1],
            'ends': [4],
        }

        self.orig2prim_args = (None, None, X, None, None)
        self.all_ops = ['slice', 'slice_select_p']
        self.out_map = {0: self.output['Out']}


class TestFillZerosLikeOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'fill_zeros_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

373 374 375
        self.input = {
            'X': X,
        }
376
        self.output = {
377 378 379
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
380 381 382
        }
        self.attrs = {}

383
        self.orig2prim_args = (X,)
384 385 386 387
        self.all_ops = ['fill_zeros_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


388 389 390 391 392 393 394 395 396
class TestFillAnyLikeOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'fill_any_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

        self.input = {
            'X': X,
        }
        self.output = {
397 398 399
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
400 401 402
        }
        self.attrs = {}

403
        self.orig2prim_args = (X,)
404 405 406 407 408 409 410 411 412 413 414 415 416
        self.all_ops = ['fill_any_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


class TestFillAnyLikeOrig2Prim2(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'fill_any_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

        self.input = {
            'X': X,
        }
        self.output = {
417 418 419
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
420 421 422
        }
        self.attrs = {'dtype': paddle.float32, 'value': 5}

423
        self.orig2prim_args = (X,)
424 425 426 427
        self.all_ops = ['fill_any_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


428 429 430 431 432 433 434 435
class TestSumOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'sum'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
436 437 438
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
439 440 441
        }
        self.attrs = {}

442
        self.orig2prim_args = ((X, Y),)
443 444 445 446 447 448 449 450 451
        self.all_ops = ['sum', 'add_p']
        self.out_map = {0: self.output['Out']}


class TestPNormOrig2Prim1(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'p_norm'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

452 453 454
        self.input = {
            'X': X,
        }
455
        self.output = {
456 457 458
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
459 460 461 462 463 464
        }
        self.attrs = {
            'porder': 1,
            'asvector': True,
        }

465
        self.orig2prim_args = (X,)
466
        self.all_ops = ['p_norm', 'reshape_p', 'abs_p', 'reduce_sum_p']
467 468 469 470 471 472 473 474
        self.out_map = {0: self.output['Out']}


class TestPNormOrig2Prim2(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'p_norm'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

475 476 477
        self.input = {
            'X': X,
        }
478
        self.output = {
479 480 481
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
482 483 484 485 486 487
        }
        self.attrs = {
            'porder': 2,
            'asvector': True,
        }

488
        self.orig2prim_args = (X,)
489
        self.all_ops = [
490 491 492 493 494
            'p_norm',
            'reshape_p',
            'sqrt_p',
            'reduce_sum_p',
            'mul_p',
495
        ]
496 497 498 499 500 501 502 503 504 505 506
        self.out_map = {0: self.output['Out']}


class TestIndexSelectOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'index_select'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Index = paddle.static.data(name='Index', shape=[2], dtype='int32')

        self.input = {'X': X, 'Index': Index}
        self.output = {
507 508 509
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
510
        }
511 512 513
        self.attrs = {
            'dim': 0,
        }
514 515 516

        self.orig2prim_args = (
            Index,
517 518
            X,
        )
519 520 521 522 523 524 525 526 527 528 529 530
        self.all_ops = ['index_select', 'gather_p']
        self.out_map = {0: self.output['Out']}


class TestElementwiseSubOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'elementwise_sub'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int32')
        Y = paddle.static.data(name='Y', shape=[6], dtype='int32')

        self.input = {'X': X, 'Y': Y}
        self.output = {
531 532 533
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
534
        }
535 536 537
        self.attrs = {
            'dim': 0,
        }
538 539 540

        self.orig2prim_args = (
            X,
541 542
            Y,
        )
543 544 545 546 547 548 549 550 551
        self.all_ops = ['elementwise_sub', 'broadcast_p', 'sub_p']
        self.out_map = {0: self.output['Out']}


class TestScaleOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'scale'
        X = paddle.static.data(name='X', shape=[10, 7], dtype='int32')

552 553 554
        self.input = {
            'X': X,
        }
555
        self.output = {
556 557 558
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
559 560 561 562 563
        }
        self.attrs = {'scale': 2.0, 'bias': 1.0, 'bias_after_scale': True}

        self.orig2prim_args = (
            None,
564 565
            X,
        )
566
        self.all_ops = [
567 568 569 570 571
            'scale',
            'fill_constant_p',
            'fill_constant_p',
            'mul_p',
            'add_p',
572 573 574 575 576 577 578 579 580
        ]
        self.out_map = {0: self.output['Out']}


class TestAssignOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'assign'
        X = paddle.static.data(name='X', shape=[10, 7], dtype='int32')

581 582 583
        self.input = {
            'X': X,
        }
584
        self.output = {
585 586 587
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
588 589 590
        }
        self.attrs = {}

591
        self.orig2prim_args = (X,)
592 593 594 595
        self.all_ops = ['assign', 'fill_constant_p', 'add_p']
        self.out_map = {0: self.output['Out']}


596 597 598 599 600 601 602 603 604
class TestWhereOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'where'
        Cond = paddle.static.data(name='Condition', shape=[5, 6], dtype='bool')
        X = paddle.static.data(name='X', shape=[5, 6], dtype='float32')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='float32')

        self.input = {'Condition': Cond, 'X': X, 'Y': Y}
        self.output = {
605 606 607
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
        }
        self.attrs = {}
        self.orig2prim_args = (Cond, X, Y)
        self.all_ops = ['where', 'select_p']
        self.out_map = {0: self.output['Out']}


class TestEqualOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
623 624 625
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype='bool'
            )
626 627 628 629 630 631 632 633
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['equal', 'eq_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


634 635 636 637 638 639 640 641
class TestNeOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'not_equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
642 643 644
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype='bool'
            )
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['not_equal', 'ne_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGtOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'greater_than'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
661 662 663
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype='bool'
            )
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['greater_than', 'gt_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGeOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'greater_equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
680 681 682
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype='bool'
            )
683 684 685 686 687 688 689 690
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['greater_equal', 'ge_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


691 692 693 694 695 696 697 698
class TestPowOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'elementwise_pow'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
699 700 701
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
702 703 704 705 706 707 708 709 710
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_pow', 'pow_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


711 712 713 714 715 716 717 718
class TestMaxOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'elementwise_max'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
719 720 721
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
722 723 724 725 726 727 728 729 730
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_max', 'max_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


731 732 733 734 735 736 737
class TestGeluOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'gelu'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
738 739 740
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
741 742 743
        }
        self.attrs = {'approximate': False}

744
        self.orig2prim_args = (X,)
745
        self.all_ops = [
746 747 748 749 750 751 752 753 754
            'gelu',
            'add_p',
            'erf_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'mul_p',
            'mul_p',
            'mul_p',
755 756 757 758 759 760 761 762 763 764 765 766
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGeluApproximateOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'gelu'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
767 768 769
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
770 771 772
        }
        self.attrs = {'approximate': True}

773
        self.orig2prim_args = (X,)
774
        self.all_ops = [
775 776 777 778 779 780 781 782 783 784 785 786 787 788
            'add_p',
            'add_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'gelu',
            'mul_p',
            'mul_p',
            'mul_p',
            'mul_p',
            'pow_p',
            'tanh_p',
789 790 791 792 793
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


794 795 796 797 798 799 800
class TestDropoutOrig2PrimCase1(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'dropout'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
801 802 803 804 805 806
            'Mask': self.layer_help.create_variable_for_type_inference(
                dtype=paddle.uint8
            ),
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            ),
807 808 809 810
        }
        self.attrs = {
            'dropout_prob': 0.5,
            'is_test': False,
811
            'dropout_implementation': 'upscale_in_train',
812 813 814 815
        }

        self.orig2prim_args = (None, X)
        self.all_ops = [
816 817 818 819 820 821
            'bernoulli_p',
            'mul_p',
            'fill_constant_p',
            'div_p',
            'cast_p',
            'dropout',
822 823 824 825 826 827 828 829 830 831 832 833
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Mask'], 1: self.output['Out']}


class TestDropoutOrig2PrimCase2(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'dropout'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
834 835 836 837 838 839
            'Mask': self.layer_help.create_variable_for_type_inference(
                dtype=paddle.uint8
            ),
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            ),
840 841 842 843
        }
        self.attrs = {
            'dropout_prob': 0.5,
            'is_test': False,
844
            'dropout_implementation': 'downgrade_in_infer',
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
        }

        self.orig2prim_args = (None, X)
        self.all_ops = ['bernoulli_p', 'mul_p', 'cast_p', 'dropout']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Mask'], 1: self.output['Out']}


class TestDropoutOrig2PrimCase3(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'dropout'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
860 861 862 863 864 865
            'Mask': self.layer_help.create_variable_for_type_inference(
                dtype=paddle.uint8
            ),
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            ),
866 867 868 869
        }
        self.attrs = {
            'dropout_prob': 0.5,
            'is_test': True,
870
            'dropout_implementation': 'upscale_in_train',
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
        }

        self.orig2prim_args = (None, X)
        self.all_ops = ['bernoulli_p', 'cast_p', 'dropout']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Mask'], 1: self.output['Out']}


class TestDropoutOrig2PrimCase4(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'dropout'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
886 887 888 889 890 891
            'Mask': self.layer_help.create_variable_for_type_inference(
                dtype=paddle.uint8
            ),
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            ),
892 893 894 895
        }
        self.attrs = {
            'dropout_prob': 0.5,
            'is_test': True,
896
            'dropout_implementation': 'downgrade_in_infer',
897 898 899 900
        }

        self.orig2prim_args = (None, X)
        self.all_ops = [
901 902 903 904 905
            'bernoulli_p',
            'fill_constant_p',
            'mul_p',
            'cast_p',
            'dropout',
906 907 908 909 910
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Mask'], 1: self.output['Out']}


911 912 913
class TestReduceSumOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'reduce_sum'
914

915 916 917 918
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
919 920 921
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
922 923 924
        }
        self.attrs = {'axis': [0, 1], 'keep_dim': False}

925
        self.orig2prim_args = (X,)
926 927 928 929 930 931 932 933 934 935 936 937
        self.all_ops = ['reduce_sum', 'reduce_sum_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestReduceMeanOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'reduce_mean'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
938 939 940
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
941 942 943
        }
        self.attrs = {'axis': [0, 1], 'keep_dim': False}

944
        self.orig2prim_args = (X,)
945
        self.all_ops = [
946 947 948 949
            'reduce_mean',
            'reduce_sum_p',
            'fill_constant_p',
            'div_p',
950 951 952 953 954
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


955 956 957 958 959 960 961
class TestSizeOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'size'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'Input': X}
        self.output = {
962 963 964
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=paddle.int64
            )
965 966
        }
        self.attrs = {}
967
        self.orig2prim_args = (X,)
968 969 970 971 972 973 974 975 976 977 978 979
        self.all_ops = ['size', 'fill_constant_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestCastOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'cast'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
980 981 982
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
983 984
        }
        self.attrs = {'in_dtype': X.dtype, 'out_dtype': paddle.float64}
985
        self.orig2prim_args = (X,)
986 987 988 989 990 991 992 993 994 995 996 997
        self.all_ops = ['cast', 'cast_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestPowScalarOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'pow'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
998 999 1000
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1001
        }
1002
        self.attrs = {'factor': 2.0}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        self.orig2prim_args = (None, X)
        self.all_ops = ['pow', 'pow_p', 'fill_constant_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestSquareOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'square'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
1016 1017 1018
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
1019 1020
        }
        self.attrs = {}
1021
        self.orig2prim_args = (X,)
1022 1023 1024 1025 1026
        self.all_ops = ['square', 'pow_p', 'fill_constant_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


J
Jiabin Yang 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035
class TestRSqrtOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'rsqrt'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

        self.input = {
            'X': X,
        }
        self.output = {
1036 1037 1038
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=X.dtype
            )
J
Jiabin Yang 已提交
1039 1040 1041
        }
        self.attrs = {}

1042
        self.orig2prim_args = (X,)
J
Jiabin Yang 已提交
1043 1044 1045 1046 1047
        self.all_ops = ['rsqrt', 'rsqrt_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
class TestBatchnormOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'batch_norm'
        x = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        m = paddle.static.data(name='Mean', shape=[8], dtype='float')
        v = paddle.static.data(name='Variance', shape=[8], dtype='float')
        w = paddle.static.data(name='Scale', shape=[8], dtype='float')
        b = paddle.static.data(name='Bias', shape=[8], dtype='float')

        self.input = {
            "X": [x],
            "Scale": [w],
            "Bias": [b],
            "Mean": [m],
1062
            "Variance": [v],
1063 1064
        }
        saved_variance = self.layer_help.create_variable_for_type_inference(
1065 1066
            dtype=x.dtype, stop_gradient=True
        )
1067
        batch_norm_out = self.layer_help.create_variable_for_type_inference(
1068 1069
            x.dtype
        )
1070
        saved_mean = self.layer_help.create_variable_for_type_inference(
1071 1072
            dtype=x.dtype, stop_gradient=True
        )
1073 1074 1075 1076 1077
        self.output = {
            "Y": [batch_norm_out],
            "MeanOut": [m],
            "VarianceOut": [v],
            "SavedMean": [saved_mean],
1078
            "SavedVariance": [saved_variance],
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        }

        self.attrs = {
            "momentum": 0.9,
            "epsilon": 1e-5,
            "is_test": False,
            "data_layout": 'NCHW',
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }
        self.orig2prim_args = (b, m, None, w, v, x)
        self.all_ops = [
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
            'add_p',
            'add_p',
            'add_p',
            'add_p',
            'batch_norm',
            'broadcast_p',
            'broadcast_p',
            'broadcast_p',
            'broadcast_p',
            'broadcast_p',
            'div_p',
            'div_p',
            'div_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'fill_constant_p',
            'mul_p',
            'mul_p',
            'mul_p',
            'mul_p',
            'mul_p',
            'pow_p',
            'reduce_sum_p',
            'reduce_sum_p',
            'reshape_p',
            'reshape_p',
            'reshape_p',
            'reshape_p',
            'sqrt_p',
            'sub_p',
            'sub_p',
            'sub_p',
            'sub_p',
1132 1133 1134 1135 1136 1137 1138 1139 1140
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {}


class TestFillConstantOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'fill_constant'

1141
        self.attrs = {'value': 1.0, 'shape': (2, 3), 'dtype': paddle.float32}
1142 1143
        self.input = {}
        self.output = {
1144 1145 1146
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=paddle.float32
            )
1147 1148 1149 1150 1151 1152 1153 1154
        }

        self.orig2prim_args = (None, None, None)
        self.all_ops = ['fill_constant', 'fill_constant_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


1155 1156 1157 1158 1159
class TestUniformRandomOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'uniform_random'
        self.input = {}
        self.output = {
1160 1161 1162
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=paddle.float32
            )
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        }
        self.attrs = {'shape': [1, 2]}

        self.orig2prim_args = (None, None)
        self.all_ops = ['uniform_random', 'uniform_random_p']
        self.out_map = {0: self.output['Out']}


class TestSigmoidOrig2Prim(TestElementWiseAddOrig2Prim):
    def init_data(self):
        self.op_type = 'sigmoid'
        X = paddle.static.data(name='X', shape=[3], dtype='float32')

        self.attrs = {}
        self.input = {'X': X}
        self.output = {
1179 1180 1181
            'Out': self.layer_help.create_variable_for_type_inference(
                dtype=paddle.float32
            )
1182 1183
        }

1184
        self.orig2prim_args = (X,)
1185
        self.all_ops = [
1186 1187 1188 1189 1190 1191 1192 1193
            'sigmoid',
            'div_p',
            'fill_constant_p',
            'add_p',
            'fill_constant_p',
            'exp_p',
            'fill_constant_p',
            'sub_p',
1194 1195 1196 1197
        ]
        self.out_map = {0: self.output['Out']}


1198 1199
if __name__ == '__main__':
    unittest.main()