utils.py 85.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import copy
16 17
import logging
import os
18
import threading
19
import warnings
20
from functools import reduce
21

22 23 24
import numpy as np

import paddle
25
from paddle.base.wrapped_decorator import wrap_decorator
26
from paddle.framework import core
27
from paddle.framework.io_utils import is_belong_to_optimizer, is_parameter
28
from paddle.static import Variable
29

30
from ..process_mesh import ProcessMesh
31
from .dist_attribute import DistTensorSpec, OperatorDistAttr, TensorDistAttr
32

33
OpRole = core.op_proto_and_checker_maker.OpRole
34 35
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()

Z
zhaoyingli 已提交
36
__no_shape_var_type__ = [
37 38
    core.VarDesc.VarType.READER,
    core.VarDesc.VarType.STEP_SCOPES,
Z
zhaoyingli 已提交
39 40 41
    core.VarDesc.VarType.LOD_TENSOR_ARRAY,
    core.VarDesc.VarType.FEED_MINIBATCH,
    core.VarDesc.VarType.FETCH_LIST,
42 43
]

44 45
__not_naive_data_parallel_op__ = ["expand_v2"]

46

47 48 49 50 51 52 53
def get_logger(log_level, name="auto_parallel"):
    logger = logging.getLogger(name)
    logger.propagate = False
    if not logger.handlers:
        logger.setLevel(log_level)
        log_handler = logging.StreamHandler()
        log_format = logging.Formatter(
54 55
            '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
        )
56 57
        log_handler.setFormatter(log_format)
        logger.addHandler(log_handler)
58 59
    else:
        logger.setLevel(log_level)
60 61 62
    return logger


63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
def is_valid_list_index(list, index):
    if index >= -len(list) and index < len(list):
        return True
    else:
        return False


def is_dim_shard(mapping):
    if mapping != -1:
        return True
    else:
        return False


def is_dim_replicate(mapping):
    if mapping == -1:
        return True
    else:
        return False


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def verify_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    if not all(isinstance(d, int) for d in dims_mapping):
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(process_mesh.shape):
            return False
    for i in range(len(process_mesh.shape)):
        if dims_mapping.count(i) > 1:
            return False
    return True


def convert_to_dims_mapping(shard_spec, process_mesh):
    dims_mapping = []
    for shard in shard_spec:
        if shard is None:
            dims_mapping.append(-1)
103
        elif process_mesh.shape[process_mesh.dim_names.index(shard)] == 1:
Z
zhaoyingli 已提交
104
            dims_mapping.append(-1)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        else:
            dims_mapping.append(process_mesh.dim_names.index(shard))
    return dims_mapping


def convert_to_shard_spec(dims_mapping, process_mesh):
    shard_spec = []
    for dim_mapping in dims_mapping:
        if dim_mapping == -1:
            shard_spec.append(None)
        else:
            shard_spec.append(process_mesh.dim_names[dim_mapping])
    return shard_spec


def verify_shard_spec(shard_spec, tensor_shape, process_mesh):
    if len(shard_spec) != len(tensor_shape):
        return False
    for shard in shard_spec:
        if shard is not None and not isinstance(shard, str):
            return False
        if shard is not None and shard not in process_mesh.dim_names:
            return False
    dims_mapping = convert_to_dims_mapping(shard_spec, process_mesh)
    if not verify_dims_mapping(dims_mapping, process_mesh):
        return False
    for i in range(len(tensor_shape)):
132 133 134 135 136
        if (
            dims_mapping[i] != -1
            and tensor_shape[i] > 0
            and tensor_shape[i] % process_mesh.shape[dims_mapping[i]] != 0
        ):
137 138 139 140
            return False
    return True


141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
def compute_compatible_dim_mapping(dim_mappings):
    if not dim_mappings:
        return None
    compatible_mapping = dim_mappings[0]
    for mapping in dim_mappings:
        if compatible_mapping == -1:
            compatible_mapping = mapping
        elif mapping == -1:
            continue
        elif compatible_mapping == mapping:
            continue
        else:
            return None
    return compatible_mapping


def compute_compatible_dims_mapping(dims_mapping_list):
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
162 163 164 165 166 167
        assert (
            dims_mapping is not None
        ), "Dims mapping must not be None for compatible computation"
        assert (
            len(dims_mapping) == length
        ), "The length of dims_mapping in list must be same for compatible computation."
168 169 170
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
171 172
            list(dim_mappings)
        )
173 174 175 176 177 178 179 180 181 182 183 184
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


def compute_compatible_process_mesh(process_mesh_list):
    compatible_process_mesh = None
    if not process_mesh_list:
        return compatible_process_mesh
    for process_mesh in process_mesh_list:
        if process_mesh is not None:
185 186 187 188
            if (
                compatible_process_mesh is None
                or compatible_process_mesh == process_mesh
            ):
189 190
                compatible_process_mesh = process_mesh
            else:
191
                return None
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    return compatible_process_mesh


def compute_compatible_and_update_dim_mapping(dims_mapping_list, index_list):
    assert len(dims_mapping_list) == len(index_list)
    changed = False
    dim_mappings = []
    for i in range(len(dims_mapping_list)):
        assert is_valid_list_index(dims_mapping_list[i], index_list[i])
        dim_mappings.append(dims_mapping_list[i][index_list[i]])
    compatible_dim_mapping = compute_compatible_dim_mapping(dim_mappings)
    if compatible_dim_mapping is None:
        return False
    for i in range(len(dims_mapping_list)):
        if compatible_dim_mapping != dims_mapping_list[i][index_list[i]]:
            dims_mapping_list[i][index_list[i]] = compatible_dim_mapping
            changed = True
    return changed


def append_distributed_attr_suffix(name):
    """
    Append auto parallel suffix for distributed attribute name.
    """
    return name + core.kAutoParallelSuffix()


def remove_distributed_attr_suffix(name):
    """
    Remove auto parallel suffix from distributed attribute name.
    """
    return name.strip(core.kAutoParallelSuffix())


def check_distributed_attr_for_program(program, dist_context=None):
227
    from .dist_context import get_default_distributed_context
228

229 230
    if dist_context is None:
        dist_context = get_default_distributed_context()
231 232 233
    assert (
        dist_context.is_initialized_for_program()
    ), "Distributed attributes must be initialized before check."
234 235
    for block in program.blocks:
        for tensor in block.vars.values():
236 237
            dist_tensor = dist_context.get_dist_tensor_for_graph(tensor)
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
238 239
                tensor
            )
240
            if (tensor_dist_attr is not None) and (not dist_tensor.is_valid()):
241 242
                return False
        for op in block.ops:
243 244 245
            dist_op = dist_context.get_dist_op_for_graph(tensor)
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
            if (op_dist_attr is not None) and (not dist_op.is_valid()):
246 247 248 249
                return False
    return True


250
def print_program_with_dist_attr(program, dist_context=None):
251 252 253 254 255 256
    """
    This function reuses the original program output ability with a distributed context.
    Using lock can avoid multiple threads change the default distributed context simultaneously.
    """
    lock = threading.Lock()
    lock.acquire()
257 258 259 260
    from .dist_context import (
        get_default_distributed_context,
        set_default_distributed_context,
    )
261

262 263
    if dist_context is None:
        dist_context = get_default_distributed_context()
264
        print(program, flush=True)
265 266 267
    else:
        original_default_context = get_default_distributed_context()
        set_default_distributed_context(dist_context)
268
        print(program, flush=True)
269 270
        set_default_distributed_context(original_default_context)
    lock.release()
271 272 273 274


def _get_comm_group(processes, shape, axis, rank):
    """
275
    Given a rank and the processes mesh the rank belongs to,
276 277
    compute the communication peers of the rank based on the give axis in the mesh.

C
chenxujun 已提交
278
    Example: 16 processes managed in a 4-Dimensional mesh with shape of [2, 2, 2, 2].
279 280 281 282 283 284 285 286
    the rank communication peers of rank 0 (included) are following:
    in axis 0: [0, 1]
    in axis 1: [0, 2]
    in axis 2: [0, 4]
    in axis 3: [0, 8]
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
287 288
    # tricks to support processes mesh when it is not start with 0 or continuous
    assert rank in processes, "rank [{}] is NOT in processes group {}".format(
289 290
        rank, processes
    )
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    coordinates_in_group = [coordinate[:] for i in range(shape[axis])]

    # select comm group
    for i in range(shape[axis]):
        coordinates_in_group[i][axis] = i

    ranks_in_group_relative = [
        _coordinate2linear_idx(shape, coordinate)
        for coordinate in coordinates_in_group
    ]
    ranks_in_group = [processes[idx] for idx in ranks_in_group_relative]

    return sorted(ranks_in_group)


308 309
def _get_idx_in_axis(processes, shape, axis, rank):
    """
310
    Given a rank and the processes mesh the rank belongs to,
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    compute the index of the rank in given axis.

    Example: 27 processes managed in a 3-Dimensinal mesh with shape of [3, 3, 3].
    the index of rank 22 are:
    in axis 0: 1
    in axis 1: 1
    in axis 2: 2
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
    #  tricks to support processes mesh when it is not start with 0 or continuous
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    return coordinate[axis]


327 328 329 330
def _coordinate2linear_idx(mesh_shape, coordinate):
    """
    convert a coordinate in multidimensional mesh space into a scala idx in linear space.

331
    it use Row-major order for dimension conversion.
332
    so it has:  [most_significant_dim, ..., least_significant_dim]
333
    assume:
334 335 336 337

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

338
    linear_idx of a n dimensional coordinate is:
339 340

        I[n-1] * (S[n-2] * S[n-3] * S[n-4] *     ....    S[0]) +
341 342
        I[n-2] * (         S[n-3] * S[n-4] *     ....    S[0]) +
        I[n-3] * (                  S[n-4] *     ....    S[0]) +
343
        ...
344
        I[1]   * (                                       S[0]) +
345 346 347 348
        I[0]

    """
    # NOTE the following function work based on a strong an assumption
349
    # that the processes in mesh are
350
    #    1. starts from 0
351
    #    2. continuous
C
chenxujun 已提交
352
    # it will be wrong if ths above condition does not meet,
353
    # e.g. process_mesh = { process_groups = [7, 8, 9,10, 12, 13, 14, 15], mesh = [2, 4]}
354
    # if you want a more general mapping, you should use cartesian product
355 356 357 358

    assert len(mesh_shape) == len(
        coordinate
    ), "coordinate should have the same size as mesh shape, but got shape: {}, coordinate: {}".format(
359 360
        mesh_shape, coordinate
    )
361
    for i in range(len(mesh_shape)):
362 363 364 365 366 367 368 369 370 371
        assert (
            coordinate[i] >= 0
        ), "index in dimension [{}] is least than zero. coordinate: {}".format(
            i, coordinate
        )
        assert (
            coordinate[i] < mesh_shape[i]
        ), "index beyond extent in dimension [{}]. shape: {}, coordinate: {}".format(
            i, mesh_shape, coordinate
        )
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

    base = mesh_shape[-1]
    linear_idx = coordinate[-1]

    # row major order
    for i in range(len(mesh_shape) - 2, -1, -1):
        linear_idx += base * coordinate[i]
        base *= mesh_shape[i]

    return linear_idx


def _linear_idx2coordinate(mesh_shape, linear_idx):
    """
    mapping a linear scala into multidimensional mesh space, return it coordinate in that space.

    it is the inverse function of _coordinate2linear_idx.
389
    assume:
390 391 392 393 394 395 396 397 398 399 400 401 402 403

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

    the coordinate given linear_idx is:

        I[0] = linear_idx                                  % S[0]
        I[0] = (linear_idx / S[0])                         % S[1]
        I[0] = (linear_idx / (S[0] * S[1]))                % S[2]
        ....

    """

    assert linear_idx >= 0, "linear index [{}] is least than zero".format(
404 405
        linear_idx
    )
406 407 408
    assert linear_idx < np.prod(
        mesh_shape
    ), "linear index beyond the extent of mesh shape. shape: {}, linear index: {}".format(
409 410
        mesh_shape, linear_idx
    )
411 412 413 414 415 416 417 418 419 420 421

    base = 1
    coordinate = [-1] * len(mesh_shape)

    for i in reversed(range(len(mesh_shape))):
        offset = linear_idx / base
        coordinate[i] = int(offset % mesh_shape[i])
        base *= mesh_shape[i]

    # row major order
    return coordinate
422 423


424
def _get_corresponding_rank(dist_context, target_mesh, rank):
425 426 427 428 429
    # TODO(JZ-LIANG) a hack method to support varying mesh in Pipeline parallelism case.
    # we assume that all mesh are evenly divide from a parent mesh and should have same size.
    # to revise this in future.

    coordinate = None
430
    for mesh in dist_context.process_meshes:
431
        if rank in mesh.process_ids and mesh.shape == target_mesh.shape:
432
            coordinate = _linear_idx2coordinate(
433
                mesh.shape, mesh.process_ids.index(rank)
434
            )
435 436
            break

437 438 439
    # assert coordinate is not None, "could NOT found rank [{}] in any registered mesh".format(
    #     rank)
    if coordinate is not None:
440 441
        return target_mesh.process_ids[
            _coordinate2linear_idx(mesh.shape, coordinate)
442
        ]
443
    else:
444
        return target_mesh.process_ids[0]
445 446


447 448
def _get_unshard_dist_shape(var, dist_attr):
    var_shape = var.shape
449
    mapping = dist_attr.dims_mapping
450
    mesh = dist_attr.process_mesh.shape
451 452 453
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
454 455
        var_shape, mapping
    )
456 457 458 459 460 461 462 463 464 465
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            new_shape.append(var_shape[idx] * mesh[mapping[idx]])

    return new_shape


466
def make_data_unshard(dist_main_prog, dist_startup_prog, dist_context=None):
467
    from .dist_context import get_default_distributed_context
468

469 470
    if dist_context is None:
        dist_context = get_default_distributed_context()
471 472 473

    for var in dist_main_prog.list_vars():
        if var.is_data:
474
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
475 476
                var
            )
477 478
            inverse_shape = _get_unshard_dist_shape(var, tensor_dist_attr)
            var.desc.set_shape(inverse_shape)
479
            dim_mapping = tensor_dist_attr.dims_mapping
480
            dim_mapping = [-1] * len(dim_mapping)
481 482
            tensor_dist_attr.dims_mapping = dim_mapping
            dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
483 484


485
def _update_addition_info(addition_info):
486
    """Update default addition_info with inputs"""
487
    add_info = {"epoch": 0, "batch": 0, "batch_size": 0}
488
    if not addition_info:
489
        return add_info
490
    elif not isinstance(addition_info, dict):
491 492 493 494
        raise TypeError(
            "The type of 'addition_info' should be 'dict', "
            "but got '{}'.".format(str(type(addition_info)))
        )
495
    else:
496 497 498 499
        for item, value in addition_info.items():
            if item not in ["epoch", "batch", "batch_size"]:
                raise ValueError(
                    "The key of 'addition_info' should be one of the "
500
                    "['epoch', 'batch', 'batch_size'], but got '{}'.".format(
501 502 503
                        str(item)
                    )
                )
504 505 506
            if not isinstance(value, int):
                raise ValueError(
                    "The value of 'addition_info' should be 'int', "
507 508
                    "but got '{}'.".format(str(type(value)))
                )
509 510
            add_info[item] = value
        return add_info
511 512 513


def _check_valid_path(file_path):
514
    """Validity check of input file path"""
515 516 517
    if not file_path:
        return file_path
    elif isinstance(file_path, list):
518 519
        for file in file_path:
            if not isinstance(file, str):
520 521 522 523
                raise TypeError(
                    "The type of file path should be 'str', "
                    "but got '{}'.".format(str(type(file)))
                )
524
            if not os.path.exists(file):
525
                raise ValueError(f"The file path '{file}' does not exist.")
526 527
        return file_path
    else:
528 529 530 531
        raise TypeError(
            "The type of file path should be 'list', "
            "but got '{}'.".format(str(type(file_path)))
        )
532 533 534 535 536 537


def _check_param_dict(param_dict):
    if not param_dict:
        raise ValueError("'param_dict' cannot be None.")
    elif not isinstance(param_dict, dict):
538 539 540 541
        raise TypeError(
            "The type of 'param_dict' should be 'dict', "
            "but got '{}'.".format(str(type(param_dict)))
        )
542 543 544 545 546
    else:
        for name, value in param_dict.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of key of 'param_dict' should be 'str', "
547 548
                    "but got '{}'.".format(str(type(name)))
                )
549
            if not isinstance(value, paddle.base.LoDTensor):
550 551
                raise TypeError(
                    "The type of value of 'param_dict' should be 'LoDTensor', "
552 553
                    "but got '{}'.".format(str(type(value)))
                )
554 555 556 557 558 559 560
        return param_dict


def _check_dist_attr(dist_attr):
    if not dist_attr:
        return dist_attr
    elif not isinstance(dist_attr, dict):
561 562 563 564
        raise TypeError(
            "The type of 'dist_attr' should be 'dict', "
            "but got '{}'.".format(str(type(dist_attr)))
        )
565 566 567 568 569
    else:
        for name, value in dist_attr.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of param name of 'dist_attr' should be 'str', "
570 571
                    "but got '{}'.".format(str(type(name)))
                )
572 573 574
            if not isinstance(value, dict):
                raise TypeError(
                    "The type of distributed attribute should be 'dict', "
575 576
                    "but got '{}'".format(str(type(value)))
                )
577 578 579 580 581
            attr = ['process_shape', 'process_group', 'dims_mapping']
            if list(value.keys()) != attr:
                raise ValueError(
                    "The key of distributed attribute should be "
                    "'['process_shape', 'process_group', 'dims_mapping']', "
582 583
                    "but got {}.".format(str(value.keys()))
                )
584
        return dist_attr
585 586


587 588 589 590 591 592 593 594
def save_distributed_checkpoint(
    program,
    checkpoint_path,
    dist_attr_path,
    addition_info=None,
    is_integrated=False,
    dist_context=None,
):
595
    """
C
chenxujun 已提交
596
    Save model parameter state, optimizer state, distributed attribute and
597 598 599 600 601
    additional information of each rank.

    Args:
        program(Program): The program to be saved.
        checkpoint_path(str): The path of the checkpoint file to be saved.
602 603 604
        dist_attr_path(str): The path of distributed attribute file to be saved.
        addition_info(dict, optional): Additional information, key should be selected in ['epoch', 'batch', 'batch_size'].
            Default values are 0, when 'addition_info' is None. Default: None.
605
        is_integrated(bool, optional): Whether to integrate param before save. Default: False.
606
        dist_context(DistributedContext ,optional): collect related distributed information for program
607 608 609 610 611 612 613

    Returns:
        None

    Examples:
        .. code-block:: python

614 615 616 617 618 619 620 621 622 623 624 625
            >>> import os
            >>> from paddle.distributed.auto_parallel.static.utils import save_distributed_checkpoint

            >>> step = 16000
            >>> global_batch_size = 32
            >>> path = os.path.join("./output", "step_%d" % step)
            >>> os.makedirs(path, exist_ok=True)
            >>> program = paddle.static.Program()

            >>> add_info = {'batch': step, "batch_size": global_batch_size}
            >>> save_distributed_checkpoint(program, path, path, add_info)

626
    """
627 628
    from .dist_context import get_default_distributed_context

629
    assert isinstance(program, paddle.static.Program)
630 631 632 633 634
    assert isinstance(is_integrated, bool)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    addition_info = _update_addition_info(addition_info)

635
    if not is_integrated:
636 637
        _save_distributed_state_dict(program, addition_info, checkpoint_path)
        _save_distributed_attribute(program, dist_attr_path, dist_context)
638 639 640
    else:
        # TODO: integrate param before save
        raise NotImplementedError(
641 642
            "Integrating parameter has not been implemented."
        )
643 644


645
def load_distributed_checkpoint(checkpoint_path, dist_attr_path):
646
    """
647
    Load parameter, optimizer, distributed attribute and addition_info.
648 649

    Args:
650 651
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
652 653

    Returns:
654 655
        param_dict(dict): parameters' value of all ranks.
        dist_attr(dict): parameters' distributed attribute.
656
        addition_info(dict): additional information user saved in last training.
657 658 659 660 661 662 663

    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.

    Examples:
        .. code-block:: python

664 665 666 667 668 669 670 671 672 673 674 675
            >>> # doctest: +SKIP('Depends on external files.')
            >>> from paddle.distributed.auto_parallel.static.utils import load_distributed_checkpoint

            >>> ckpt_path = [
            ...     './model_state_rank0.pdmodel',
            ...     './model_state_rank1.pdmodel',
            ... ]
            >>> dist_attr_path = [
            ...     './dist_attr_rank0.pdattr',
            ...     './dist_attr_rank1.pdattr',
            ... ]
            >>> param_dict, dist_attr, add_info = load_distributed_checkpoint(ckpt_path, dist_attr_path)
676
    """
677 678 679 680
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
681 682 683 684 685 686 687 688

    state_dict_info = _load_distributed_state_dict(checkpoint_path)
    dist_attr = _load_distributed_attribute(dist_attr_path)
    param_dict = state_dict_info["model"]
    addition_info = state_dict_info["addition_info"]
    return param_dict, dist_attr, addition_info


689 690 691
def load_checkpoint_into_program(
    checkpoint_path, dist_attr_path, program, dist_context=None
):
692
    """
693 694 695 696 697 698 699 700 701 702
    Load parameter, optimizer, distributed attribute and addition_info into model.

    Args:
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
        program(Program): the program to be updated with checkpoint_path.
        dist_context(DistributedContext ,optional): collect related distributed information for program

    Returns:
        addition_info(dict): user saved in last train.
703

704 705
    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.
706 707 708 709

    Examples:
        .. code-block:: python

710 711 712 713 714 715 716 717 718 719 720 721 722
            >>> # doctest: +SKIP('Depends on external files.')
            >>> from paddle.distributed.auto_parallel.static.utils import load_checkpoint_into_program

            >>> exe.run(startup_program)
            >>> ckpt_path = [
            ...     './model_state_rank0.pdmodel',
            ...     './model_state_rank1.pdmodel',
            ... ]
            >>> dist_attr_path = [
            ...     './dist_attr_rank0.pdattr',
            ...     './dist_attr_rank1.pdattr',
            ... ]
            >>> load_checkpoint_into_program(ckpt_path, dist_attr_path, main_program)
723
    """
724
    from .dist_context import get_default_distributed_context
725

726
    assert isinstance(program, paddle.static.Program)
727 728 729 730
    assert _check_valid_path(
        checkpoint_path
    ), "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), "'dist_attr_path' cannot be None."
731 732 733 734 735 736 737
    if dist_context is None:
        dist_context = get_default_distributed_context()
    all_state_dict_info = _load_distributed_state_dict(checkpoint_path)
    all_pre_dist_attr = _load_distributed_attribute(dist_attr_path)
    all_cur_dist_attr = get_dist_attr(program, dist_context)
    all_param_dict = all_state_dict_info["model"]
    addition_info = all_state_dict_info["addition_info"]
738 739 740
    sliced_param_dict = merge_and_slice_parameter(
        all_param_dict, all_pre_dist_attr, all_cur_dist_attr
    )
741 742 743 744 745 746
    load_parameter_into_program(sliced_param_dict, program)

    return addition_info


def load_parameter_into_program(param_dict, program):
747
    """
748 749 750 751 752 753
    Load parameters into program.

    Args:
        param_dict(dict): parameters' name and value.
        program(Program): the program to be updated
    """
754
    assert isinstance(param_dict, dict)
755
    assert program and isinstance(program, paddle.static.Program)
756 757
    if not param_dict:
        return
758 759 760 761
    program.set_state_dict(param_dict)


def _save_distributed_attribute(program, dist_attr_path, dist_context):
762
    """Save distributed attribute of all parameters"""
763 764
    # TODO: just save a complete distributed attribute file
    rank_id = paddle.distributed.get_rank()
765
    dist_attr_name = os.path.join(
766
        dist_attr_path, f"dist_attr_rank{rank_id}.pdattr"
767
    )
768 769
    dist_attr_dict = {
        "model": get_dist_attr(program, dist_context),
770
        "world_size": paddle.distributed.get_world_size(),
771 772
    }
    paddle.save(dist_attr_dict, dist_attr_name)
773
    logging.info(f"Already saved distributed attribute to '{dist_attr_path}'.")
774 775 776


def _load_distributed_attribute(dist_attr_path):
777
    """Load parameters' distributed attribute from dist_attr_path"""
778 779 780 781
    total_dist_attr = {}
    for dist_attr_file in dist_attr_path:
        dist_attr = paddle.load(dist_attr_file)
        pre_world_size = dist_attr["world_size"]
782 783 784
        assert pre_world_size == len(
            dist_attr_path
        ), "The number of 'dist_attr_path' must be equal to the last training world size."
785 786 787 788 789 790 791 792
        for name, attr in dist_attr["model"].items():
            if name not in total_dist_attr:
                total_dist_attr[name] = attr

    return total_dist_attr


def _save_distributed_state_dict(program, addition_info, checkpoint_path):
793
    """Save parameters' state_dict"""
794
    rank = paddle.distributed.get_rank()
795
    ckpt_file_name = os.path.join(
796
        checkpoint_path, f"model_state_rank{rank}.pdmodel"
797
    )
798 799 800
    state_dict = {
        "model": program.state_dict(),
        "world_size": paddle.distributed.get_world_size(),
801
        "addition_info": addition_info,
802 803
    }
    paddle.save(state_dict, ckpt_file_name)
804
    logging.info(f"Already saved model to '{checkpoint_path}'.")
805 806 807


def _load_distributed_state_dict(checkpoint_path):
808
    """Load parameters' state_dict from checkpoint_path"""
809 810
    all_state_dict = {}
    for idx, ckpt_file in enumerate(checkpoint_path):
Z
zhaoyingli 已提交
811
        state_dict_info = paddle.load(ckpt_file, return_numpy=True)
812
        pre_world_size = state_dict_info["world_size"]
813 814 815
        assert pre_world_size == len(
            checkpoint_path
        ), "The number of 'checkpoint_path' must be equal to the last training world size."
816 817 818 819 820 821 822 823 824 825
        if idx == 0:
            addition_info = state_dict_info["addition_info"]
        for name, value in state_dict_info["model"].items():
            if name in all_state_dict:
                all_state_dict[name].append(np.array(value))
            else:
                all_state_dict[name] = [np.array(value)]

    all_state_dict_info = {
        "model": all_state_dict,
826
        "addition_info": addition_info,
827 828 829 830 831
    }
    return all_state_dict_info


def get_dist_attr(program, dist_context=None):
832
    """
833 834 835 836 837 838 839
    Get distributed attribute of current rank.

    Args:
        program(Program): main program for training
    """
    from .dist_context import get_default_distributed_context

840
    assert isinstance(program, paddle.static.Program)
841 842 843 844 845 846
    if dist_context is None:
        dist_context = get_default_distributed_context()
    dist_attr = {}
    for var in program.list_vars():
        if is_parameter(var) or is_belong_to_optimizer(var):
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
847 848
                var
            )
849 850 851
            process_mesh = tensor_dist_attr.process_mesh
            dims_mapping = tensor_dist_attr.dims_mapping
            dist_attr[var.name] = {
852 853
                "process_shape": process_mesh.shape,
                "process_group": process_mesh.process_ids,
854
                "dims_mapping": dims_mapping,
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
            }
    return dist_attr


def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
    """
    Merge parameters with previous dist_attr and slice parameters with current dist_attr

    Arags:
        dist_param_dict(dict): parameters' value of all ranks.
        pre_dist_attr(dict): parameters' dist_attr of last training process.
        cur_dist_attr(dict): parameters' dist_attr of current training process.

    Returns:
        dist_param_dict(dict): parameters' value of current rank.
    """
    assert _check_dist_attr(pre_dist_attr), "'pre_dist_attr' cannot be None."
872 873 874 875 876
    assert isinstance(
        dist_param_dict, dict
    ), "The type of 'dist_param_dict' should be 'dict', but got {}.".format(
        str(type(dist_param_dict))
    )
877 878
    for name, value in dist_param_dict.items():
        if not isinstance(name, str):
879 880 881 882 883 884
            raise TypeError(
                "The key of 'dist_param_dict' is parameter's name, "
                "and its type should be 'str', but got {}.".format(
                    str(type(name))
                )
            )
885
        if not isinstance(value, list) or not all(
886 887
            isinstance(v, np.ndarray) for v in value
        ):
888 889
            raise TypeError(
                "The value of 'dist_param_dict' is parameter's value of all ranks, "
890 891
                "and its type should be 'list(numpy.ndarray)'."
            )
892

893 894 895
    if cur_dist_attr is None:
        return {}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    param_not_in_pre = []
    param_not_in_cur = []
    logging.info("Start to merge and slice parameters.")
    for var_name in cur_dist_attr.keys():
        if var_name not in pre_dist_attr:
            param_not_in_pre.append(var_name)
            continue

        pre_attr = pre_dist_attr[var_name]
        cur_attr = cur_dist_attr[var_name]
        if pre_attr == cur_attr:
            # skip merge and slice
            rank_id = paddle.distributed.get_rank()
            index = cur_attr["process_group"].index(rank_id)
            param = dist_param_dict[var_name][index]
911
            dist_param_dict[var_name] = param
912 913 914 915 916 917
            continue

        pre_param = dist_param_dict[var_name]
        pre_dims_mapping = pre_attr["dims_mapping"]
        cur_dims_mapping = cur_attr["dims_mapping"]
        if len(set(pre_dims_mapping)) > 1 or -1 not in pre_dims_mapping:
918
            complete_param = _merge_parameter_with_dist_attr(
919 920
                pre_param, pre_attr
            )
921 922 923
            dist_param_dict[var_name] = complete_param
        else:
            complete_param = pre_param[0]
924
            dist_param_dict[var_name] = complete_param
925 926

        if len(set(cur_dims_mapping)) > 1 or -1 not in cur_dims_mapping:
927
            sliced_param = _slice_parameter_with_dist_attr(
928 929
                complete_param, cur_attr
            )
930 931 932 933 934 935 936 937
            dist_param_dict[var_name] = sliced_param

    for var_name in pre_dist_attr:
        if var_name not in cur_dist_attr:
            param_not_in_cur.append(var_name)
            dist_param_dict.pop(var_name)

    if param_not_in_pre:
938 939
        warnings.warn(
            "Parameters '{}' are not found in last training process.".format(
940 941 942
                str(param_not_in_pre)
            )
        )
943 944
    if param_not_in_cur:
        warnings.warn(
945
            "Parameters '{}' are not found in current training process.".format(
946 947 948
                str(param_not_in_cur)
            )
        )
949 950 951 952 953

    return dist_param_dict


def _merge_parameter_with_dist_attr(param_list, dist_attr):
954
    """Merge parameter with distributed attribute"""
955
    from .reshard import Resharder
956 957 958 959 960

    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # get the complete shape of the parameter
961 962 963
    complete_shape = Resharder.compute_complete_shape(
        param_list[0].shape, process_shape, dims_mapping
    )
964 965
    # merge the parameter with dist_attr
    partition_param_list = []
Z
zhaoyingli 已提交
966
    merged_partiton = []
967
    for process in process_group:
968
        partition_index = Resharder.compute_partition_index(
969 970
            process, complete_shape, dims_mapping, process_shape, process_group
        )
971
        index = process_group.index(process)
Z
zhaoyingli 已提交
972 973
        if partition_index not in merged_partiton:
            merged_partiton.append(partition_index)
974 975 976 977 978 979
            _merge_parameter(
                partition_param_list,
                param_list[index],
                partition_index,
                complete_shape,
            )
Z
zhaoyingli 已提交
980

981 982 983
    assert (
        len(partition_param_list) == 1 or not partition_param_list
    ), "Fail to merge parameter"
984
    complete_param = partition_param_list[0][0]
985 986 987 988
    return complete_param


def _slice_parameter_with_dist_attr(param, dist_attr):
989 990
    """Slice parameter with distributed attribute"""
    param = (
991
        np.array(param) if isinstance(param, paddle.base.LoDTensor) else param
992
    )
993 994 995 996
    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # slice the parameter with dist_attr
997 998 999 1000 1001 1002
    partition_index_list = _get_split_indices(
        param.shape, dims_mapping, process_shape, process_group
    )
    sliced_param_list = _slice_parameter(
        param, partition_index_list, len(partition_index_list)
    )
1003 1004
    # get the current parameter's index in sliced_param_list
    rank_id = paddle.distributed.get_rank()
1005 1006 1007
    sliced_param_index = _get_sliced_param_index(
        rank_id, param.shape, dims_mapping, process_shape, process_group
    )
1008
    sliced_param = sliced_param_list[sliced_param_index]
1009 1010 1011
    return sliced_param


1012 1013 1014
def _merge_parameter(
    partition_param_list, param, partition_index, complete_shape
):
1015 1016 1017 1018 1019 1020 1021 1022 1023
    """
    Merge partitial parameters to a complete one.

    Returns:
        None

    Examples:
        .. code-block:: python

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
            >>> import numpy as np
            >>> from paddle.distributed.auto_parallel.static.utils import _merge_parameter

            >>> partition_param_list = [(np.array([[[1.11, 1.12]]]), [[0, 1],[0, 1],[0, 2]])]
            >>> param = np.array([[[1.13, 1.14]]])
            >>> partition_index = [[0, 1],[0, 1],[2, 4]]
            >>> complete_shape = [2, 2, 4]

            >>> _merge_parameter(partition_param_list, param, partition_index, complete_shape)
            >>> print(partition_param_list)
            [(array([[[1.11, 1.12, 1.13, 1.14]]]), [[0, 1],[0, 1],[0, 4]])]
1035 1036

    """
1037
    from .reshard import Resharder
1038

Z
zhaoyingli 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047
    if len(partition_param_list) == 1:
        is_complete_data = True
        for idx, item in enumerate(partition_param_list[0][1]):
            if item[0] != 0 or item[1] != complete_shape[idx]:
                is_complete_data = False
                break
        if is_complete_data:
            return

1048 1049
    if not partition_param_list:
        partition_param_list.append((param, partition_index))
1050
    else:
1051 1052
        i = 0
        while i < len(partition_param_list):
1053 1054 1055 1056 1057 1058 1059
            (
                concat_axis,
                first_order,
                new_partition,
            ) = Resharder.compute_concat_info(
                partition_param_list[i][1], partition_index
            )
1060 1061 1062
            if concat_axis != -1:
                if first_order == 0:
                    new_param = np.concatenate(
1063 1064
                        (partition_param_list[i][0], param), axis=concat_axis
                    )
1065 1066
                else:
                    new_param = np.concatenate(
1067 1068
                        (param, partition_param_list[i][0]), axis=concat_axis
                    )
1069 1070

                partition_param_list.pop(i)
1071 1072 1073 1074 1075 1076
                _merge_parameter(
                    partition_param_list,
                    new_param,
                    new_partition,
                    complete_shape,
                )
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
                break
            i += 1


def _slice_parameter(complete_param, partition_index_list, length):
    """
    Slice a complete parameter.

    Returns:
        sliced_param_list(list): sliced parameters with 'partition_index_list'

    Examples:
        .. code-block:: python

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
            >>> import numpy as np
            >>> from paddle.distributed.auto_parallel.static.utils import _slice_parameter

            >>> complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            >>> rank = 2
            >>> complete_shape = [1, 1, 6]
            >>> dims_mapping = [-1, -1, 0]
            >>> process_shape = [3]
            >>> process_group = [0, 1, 2]

            >>> sliced_param_list = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
            >>> print(sliced_param_list)
            [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]
1104 1105 1106 1107

    """
    sliced_param_list = []
    axis = len(complete_param.shape) - length
1108 1109 1110
    sliced_param = np.split(
        complete_param, partition_index_list[axis], axis=axis
    )
1111 1112 1113 1114
    if length == 1:
        return sliced_param
    for param in sliced_param:
        sliced_param_list.extend(
1115 1116
            _slice_parameter(param, partition_index_list, length - 1)
        )
1117 1118 1119
    return sliced_param_list


1120 1121 1122
def _get_sliced_param_index(
    rank, complete_shape, dims_mapping, process_shape, process_group
):
1123 1124 1125 1126 1127 1128 1129 1130 1131
    """
    Get sliced_param's index of current rank in all sliced parameters list.

    Returns:
        sliced_param_index(int): the index of sliced param in sliced_param_list

    Examples:
        .. code-block:: python

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
            >>> import numpy as np
            >>> from paddle.distributed.auto_parallel.static.utils import _get_sliced_param_index

            >>> complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            >>> rank = 2
            >>> complete_shape = [1, 1, 6]
            >>> dims_mapping = [-1, -1, 0]
            >>> process_shape = [3]
            >>> process_group = [0, 1, 2]

            >>> slice_param = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
            >>> print(slice_param)
            [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]

            >>> index = _get_sliced_param_index(rank, complete_shape, dims_mapping,
            ...                                 process_shape, process_group)
            >>> print(index)
            2
1150
    """
1151
    from .reshard import Resharder
1152

1153 1154 1155
    partition_index = Resharder.compute_partition_index(
        rank, complete_shape, dims_mapping, process_shape, process_group
    )
1156 1157 1158 1159 1160 1161
    sliced_param_index = 0
    for i, shape in enumerate(complete_shape):
        if dims_mapping[i] == -1:
            slice_shape = shape
        else:
            slice_shape = shape // process_shape[dims_mapping[i]]
1162 1163
        if slice_shape == 1:
            index = partition_index[i][0]
1164 1165 1166 1167
        else:
            index = (partition_index[i][0] + 1) // slice_shape
        sliced_param_index = sliced_param_index * (shape // slice_shape) + index
    return sliced_param_index
1168 1169


1170 1171 1172
def _get_split_indices(
    complete_shape, dims_mapping, process_shape, process_group
):
1173 1174 1175 1176 1177
    """
    Get split indices of every dimension.

    Returns:
        split_indices_list(list): the split indices of every dimension of the parameter
1178

1179 1180 1181
    Examples:
        .. code-block:: python

1182 1183 1184 1185 1186 1187 1188 1189
            >>> import numpy as np
            >>> from paddle.distributed.auto_parallel.static.utils import _get_split_indices

            >>> complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            >>> complete_shape = [1, 1, 6]
            >>> dims_mapping = [-1, -1, 0]
            >>> process_shape = [3]
            >>> process_group = [0, 1, 2]
1190

1191 1192 1193
            >>> index = _get_split_indices(complete_shape, dims_mapping, process_shape, process_group)
            >>> print(index)
            [[], [], [2, 4]]
1194
    """
1195
    from .reshard import Resharder
1196 1197 1198

    split_indices_list = []
    for process in process_group:
1199
        partition_index = Resharder.compute_partition_index(
1200 1201
            process, complete_shape, dims_mapping, process_shape, process_group
        )
1202 1203 1204 1205 1206 1207
        if split_indices_list:
            for dim in range(len(partition_index)):
                split_indices_list[dim].extend(partition_index[dim])
        else:
            split_indices_list = partition_index
    split_indices_list = list(
1208
        map(
1209
            lambda x, y: list(set(x) - {y} - {0}),
1210 1211 1212 1213
            split_indices_list,
            complete_shape,
        )
    )
1214 1215
    split_indices_list = [sorted(x) for x in split_indices_list]
    return split_indices_list
Z
zhaoyingli 已提交
1216 1217 1218


def set_grad_var_shape(program, dist_context):
1219 1220
    from paddle.distributed.fleet.meta_optimizers.common import OpRole

Z
zhaoyingli 已提交
1221 1222 1223 1224
    from .operators.common import infer_shape

    block = program.global_block()
    vars = block.vars
1225 1226 1227 1228 1229 1230 1231
    appended_grad_times = 0
    grad_var_to_var = dist_context.dist_op_context.grad_var_to_var

    for idx, op in enumerate(block.ops):
        if int(op.attr('op_role')) != int(OpRole.Backward):
            continue

1232 1233 1234 1235
        if (
            int(block.ops[idx - 1].attr('op_role')) == int(OpRole.Forward)
            or int(block.ops[idx - 1].attr('op_role')) == 257
        ):
1236
            appended_grad_times += 1
J
JZ-LIANG 已提交
1237 1238 1239 1240

        if op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
            break

1241
        if op.type in ["sum", "concat", "shape"]:
Z
zhaoyingli 已提交
1242 1243
            continue

1244 1245 1246 1247 1248 1249 1250 1251
        op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None

        for var_name in op.output_arg_names:
            if "@GRAD" not in var_name:
                continue
            if var_name in grad_var_to_var[appended_grad_times]:
                forward_var_name = grad_var_to_var[appended_grad_times][
1252 1253
                    var_name
                ]
1254
            else:
1255
                forward_var_name = var_name[: var_name.find("@GRAD")]
1256 1257

            if op.type in [
1258 1259 1260 1261 1262
                "c_allreduce_sum",
                "c_identity",
                "scale",
                "cast",
                "fill_any_like",
1263 1264
            ]:
                forward_var_name = op.input_arg_names[0]
1265 1266 1267 1268 1269
            elif (
                op.type == "matmul_v2_grad"
                or op.type == "matmul_grad"
                or op.type == "mul_grad"
            ):
1270 1271 1272 1273
                forward_var_name = None
                for output_name in op.output_names:
                    if var_name in op.output(output_name):
                        assert "@GRAD" in output_name
1274
                        input_name = output_name[: output_name.find("@GRAD")]
1275 1276 1277 1278 1279
                        assert len(op.input(input_name)) == 1
                        forward_var_name = op.input(input_name)[0]
                assert forward_var_name is not None

            need_set_shape_list = [
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
                "reshape2_grad",
                "softmax_with_cross_entropy_grad",
                "transpose2_grad",
                "softmax_grad",
                "cross_entropy_grad2",
                "dropout_grad",
                "tanh_grad",
                "slice",
                "assign",
                "matmul_v2_triple_grad",
                "elementwise_add_triple_grad",
                "fill_constant",
                "sqrt_grad",
Z
zhaoyingli 已提交
1293
                "fused_softmax_mask_upper_triangle_grad",
1294 1295
                "flatten_contiguous_range_grad",
                "relu_grad",
1296 1297
                "exp_grad",
                "sigmoid_grad",
1298
                "unsqueeze2_grad",
1299
                "fused_dropout_add_grad",
1300 1301
            ]
            forward_list = [
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
                "reshape2",
                "softmax_with_cross_entropy",
                "transpose2",
                "softmax",
                "cross_entropy2",
                "dropout",
                "tanh",
                ["slice_grad", "c_allgather"],
                "assign",
                "matmul_v2_grad_grad",
                "elementwise_add_grad_grad",
                "shape",
                "sqrt",
                "fused_softmax_mask_upper_triangle",
                "flatten_contiguous_range",
                "relu",
1318 1319
                "exp",
                "sigmoid",
1320
                "unsqueeze2",
1321
                "fused_dropout_add",
1322 1323 1324 1325 1326
            ]
            if op.type in need_set_shape_list:
                for forward_op in block.ops:
                    idx = need_set_shape_list.index(op.type)
                    forward_op_name = forward_list[idx]
1327 1328 1329 1330 1331 1332 1333 1334 1335
                    if (
                        forward_op.type in forward_op_name
                        and forward_var_name in forward_op.input_arg_names
                    ):
                        op_dist_attr = (
                            dist_context.get_op_dist_attr_for_program(
                                forward_op
                            )
                        )
1336 1337 1338
                        break

            forward_input_dist_attr = op_dist_attr.get_input_dist_attr(
1339 1340 1341 1342 1343
                forward_var_name
            )
            assert (
                forward_input_dist_attr is not None
            ), f"{forward_var_name, str(op)}"
1344
            forward_var = vars[forward_var_name]
1345 1346 1347
            forward_var_dist_attr = (
                dist_context.get_tensor_dist_attr_for_program(forward_var)
            )
1348 1349
            assert forward_var_dist_attr is not None
            grad_var = vars[var_name]
1350 1351 1352 1353 1354 1355
            ref_shape = infer_shape(
                block,
                forward_var,
                forward_var_dist_attr,
                forward_input_dist_attr,
            )
1356 1357 1358

            if list(grad_var.shape) != ref_shape:
                grad_var.desc.set_shape(ref_shape)
C
caozhou 已提交
1359 1360


1361 1362
def is_forward_op(op):
    op_role = int(op.attr('op_role'))
1363 1364 1365
    return OP_ROLE_KEY in op.attr_names and (
        op_role == int(OpRole.Forward) or op_role == int(OpRole.Loss)
    )
1366 1367 1368


def is_backward_op(op):
1369 1370 1371
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Backward)
1372 1373


1374
def is_optimize_op(op):
1375 1376 1377
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize)
1378 1379


1380
def is_lr_sched_op(op):
1381 1382 1383
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) & int(OpRole.Optimize.LRSched)
1384 1385


J
JZ-LIANG 已提交
1386
def is_loss_op(op):
1387 1388 1389
    return OP_ROLE_KEY in op.attr_names and int(
        op.all_attrs()[OP_ROLE_KEY]
    ) == (int(OpRole.Forward) | int(OpRole.Loss))
J
JZ-LIANG 已提交
1390 1391


1392 1393 1394 1395 1396 1397 1398
def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


1399
def is_gradient_clip_op(op):
1400 1401 1402
    return op.desc.has_attr("op_namescope") and op.desc.attr(
        "op_namescope"
    ).startswith("/gradient_clip")
1403 1404


1405 1406 1407 1408
def is_prim_op(op):
    return op.type.endswith("_p")


1409 1410 1411 1412
def is_comm_op(op):
    return op.has_attr("ring_id")


J
JZ-LIANG 已提交
1413 1414 1415 1416
def get_loss_op(block):
    loss_ops = []
    for op in block.ops:
        if is_loss_op(op):
1417 1418 1419
            assert (
                len(op.desc.output_arg_names()) == 1
            ), "loss op should only output loss var"
J
JZ-LIANG 已提交
1420 1421 1422 1423 1424 1425 1426
            loss_ops.append(op)

    assert len(loss_ops) == 1, "num of loss op is not equal to one"
    return loss_ops[0]


def set_var_dist_attr(dist_context, var, dims_mapping, process_mesh, **kwargs):
1427
    tensor_dist_attr = TensorDistAttr()
J
JZ-LIANG 已提交
1428 1429
    tensor_dist_attr.dims_mapping = dims_mapping
    # TODO get global mesh group
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    if isinstance(process_mesh, (list, np.ndarray)):
        tensor_dist_attr.process_mesh = ProcessMesh(process_mesh)
    elif isinstance(process_mesh, core.ProcessMesh):
        tensor_dist_attr.process_mesh = process_mesh
    else:
        raise ValueError(
            "{} must be a instance of ProcessMesh or list, but receive {}".format(
                process_mesh, type(process_mesh)
            )
        )
1440 1441 1442
    if "mark_annotated" in kwargs and kwargs["mark_annotated"]:
        tensor_dist_attr.mark_annotated("dims_mapping")
        tensor_dist_attr.mark_annotated("process_mesh")
J
JZ-LIANG 已提交
1443 1444 1445 1446
    dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
    return tensor_dist_attr


1447
def naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
1448 1449
    new_op, process_mesh, ref_mapping, ctx
):
J
JZ-LIANG 已提交
1450 1451 1452
    assert process_mesh is not None
    assert ref_mapping is not None

1453
    new_op_dist_attr = OperatorDistAttr()
J
JZ-LIANG 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

    for input_varname in new_op.desc.input_arg_names():
        new_op_dist_attr.set_input_dims_mapping(input_varname, ref_mapping)
    for output_varname in new_op.desc.output_arg_names():
        new_op_dist_attr.set_output_dims_mapping(output_varname, ref_mapping)

    new_op_dist_attr.process_mesh = process_mesh
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


1464 1465 1466 1467 1468
def naive_set_dist_op_attr_for_program_by_mesh(
    new_op, process_mesh, ctx, is_recompute=False
):
    assert process_mesh is not None

1469
    new_op_dist_attr = OperatorDistAttr()
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

    for input_varname in new_op.desc.input_arg_names():
        var = ctx.serial_main_program.global_block().var(input_varname)
        mapping = ctx.get_tensor_dist_attr_for_program(var).dims_mapping
        new_op_dist_attr.set_input_dims_mapping(input_varname, mapping)
    for output_varname in new_op.desc.output_arg_names():
        var = ctx.serial_main_program.global_block().var(output_varname)
        mapping = ctx.get_tensor_dist_attr_for_program(var).dims_mapping
        new_op_dist_attr.set_output_dims_mapping(output_varname, mapping)

    new_op_dist_attr.process_mesh = process_mesh
    new_op_dist_attr.is_recompute = is_recompute
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


C
caozhou 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
def update_op_dims_mapping_by_default_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    # The following statement will be replaced by a more elegent way
    if op_desc.type() == "shape" or op_desc.type() == "slice":
        return False
    output_names = op_desc.output_names()
    xshape_arg_names = []
    if "XShape" in output_names:
        xshape_arg_names = op_desc.output("XShape")
    batch_dim_mappings = []
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if len(dims_mapping) > 1:
            for idx, mapping in enumerate(dims_mapping[1:]):
1504 1505 1506 1507 1508
                assert (
                    mapping == -1
                ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                    op_desc.type(), idx, mapping
                )
1509 1510
        if len(dims_mapping) >= 1:
            batch_dim_mappings.append(dims_mapping[0])
C
caozhou 已提交
1511 1512 1513 1514 1515 1516 1517 1518
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if len(dims_mapping) > 1:
                for idx, mapping in enumerate(dims_mapping[1:]):
1519 1520 1521 1522 1523
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
1524 1525
            if len(dims_mapping) >= 1:
                batch_dim_mappings.append(dims_mapping[0])
C
caozhou 已提交
1526
        else:
1527 1528 1529 1530 1531
            assert (
                dims_mapping[0] == -1
            ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part.".format(
                op_desc.type(), mapping
            )
C
caozhou 已提交
1532 1533
            if len(dims_mapping) > 2:
                for idx, mapping in enumerate(dims_mapping[2:]):
1534 1535 1536 1537 1538
                    assert (
                        mapping == -1
                    ), "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part.".format(
                        op_desc.type(), idx, mapping
                    )
C
caozhou 已提交
1539 1540 1541
            batch_dim_mappings.append(dims_mapping[1])

    compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
1542 1543 1544
    assert (
        compatible_dim_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1545 1546 1547 1548 1549
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
1550
        if len(dims_mapping) >= 1 and compatible_dim_mapping != dims_mapping[0]:
C
caozhou 已提交
1551 1552 1553 1554 1555 1556 1557 1558
            dims_mapping[0] = compatible_dim_mapping
            changed = True
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
1559 1560 1561 1562
            if (
                len(dims_mapping) >= 1
                and compatible_dim_mapping != dims_mapping[0]
            ):
C
caozhou 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        else:
            if compatible_dim_mapping != dims_mapping[1]:
                dims_mapping[1] = compatible_dim_mapping
                changed = True

    return changed


def update_op_dims_mapping_by_elementwise_like_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    input_arg_names = op_desc.input_arg_names()
    input_dims_mapping_dict = {}
    input_dims_mapping_lens = {}
    max_dims_mapping_len = -1
    for arg_name in input_arg_names:
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if max_dims_mapping_len < len(dims_mapping):
            max_dims_mapping_len = len(dims_mapping)
        input_dims_mapping_dict[arg_name] = dims_mapping
        input_dims_mapping_lens[arg_name] = len(dims_mapping)

    dims_mapping_list = []
    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
            for i in range(input_dims_mapping_lens[arg_name]):
1593 1594 1595
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
                new_dims_mapping[new_idx] = input_dims_mapping_dict[arg_name][i]
            dims_mapping_list.append(new_dims_mapping)
        else:
            dims_mapping_list.append(input_dims_mapping_dict[arg_name])
    output_arg_names = op_desc.output_arg_names()
    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        assert len(dims_mapping) == max_dims_mapping_len
        dims_mapping_list.append(dims_mapping)

    compatible_dims_mapping = compute_compatible_dims_mapping(dims_mapping_list)
1607 1608 1609
    assert (
        compatible_dims_mapping is not None
    ), "There is no compatible dim mapping."
C
caozhou 已提交
1610 1611 1612 1613 1614 1615 1616

    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [
                -1 for _ in range(input_dims_mapping_lens[arg_name])
            ]
            for i in range(input_dims_mapping_lens[arg_name]):
1617 1618 1619
                new_idx = (
                    max_dims_mapping_len - input_dims_mapping_lens[arg_name]
                ) + i
C
caozhou 已提交
1620 1621 1622 1623 1624 1625
                new_dims_mapping[i] = compatible_dims_mapping[new_idx]
            if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                changed = True
        else:
            if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
1626 1627 1628
                op_dist_attr.set_input_dims_mapping(
                    arg_name, compatible_dims_mapping
                )
C
caozhou 已提交
1629 1630 1631 1632 1633
                changed = True

    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if compatible_dims_mapping != dims_mapping:
1634 1635 1636
            op_dist_attr.set_output_dims_mapping(
                arg_name, compatible_dims_mapping
            )
C
caozhou 已提交
1637 1638 1639
            changed = True

    return changed
1640 1641


1642 1643 1644
def get_all_distributed_main_program(
    serial_program_info, dist_context, parallelizer
):
1645
    "Get all distributed main programs by dist_context."
1646
    from .dist_context import DistributedOperatorContext
1647

1648
    cluster = serial_program_info.cluster
1649
    copied_parallelizer = copy.deepcopy(parallelizer)
1650
    all_dist_main_program = []
1651 1652 1653 1654 1655
    ranks = (
        paddle.distributed.get_world_size()
        if cluster is None
        else len(cluster.get_all_devices("GPU"))
    )
1656 1657 1658
    for rank_id in range(ranks):
        used_dist_context = copy.deepcopy(dist_context)
        used_dist_context._dist_op_context = DistributedOperatorContext()
1659 1660 1661 1662 1663 1664 1665
        (
            _,
            _,
            dist_startup_program,
            dist_main_program,
            _,
        ) = copied_parallelizer._get_dist_program(rank_id, used_dist_context)
1666 1667 1668 1669 1670 1671
        all_dist_main_program.append(dist_main_program)

    return all_dist_main_program


class SerialProgramInfo:
1672 1673 1674
    def __init__(
        self, train_program, satrtup_program, loss, optimizer, cluster=None
    ):
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
        self._train_program = train_program
        self._startup_program = satrtup_program
        self._loss = loss
        self._optimizer = optimizer
        self._cluster = cluster

    @property
    def train_program(self):
        return self._train_program

    @property
    def startup_program(self):
        return self._startup_program

    @property
    def loss(self):
        return self._loss

    @property
    def optimizer(self):
        return self._optimizer

    @property
    def cluster(self):
        return self._cluster
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714


def get_standalone_cost_data(distributed_programs):
    def _compute_runtime(op_cost, op, vars):
        runtime = 0
        try:
            runtime = float(op_cost["op_time"])
        except:
            return runtime
        op_config = op_cost["config"]
        total_static_input_size = 0
        total_actual_input_size = 0
        parsed_info = op_config.split("\n")
        variable = "(Variable)"
        for info in parsed_info:
1715 1716 1717
            variable = (
                "(Variable)" if "(Variable)" in info else "(list<Variable>"
            )
1718
            if variable in info:
1719
                arg_name_lower = info[: info.find(variable) - 1]
1720 1721
                shape_left_boundary = info.find("[")
                shape_right_boundary = info.find("]")
1722 1723 1724 1725 1726 1727 1728 1729
                assert (
                    shape_left_boundary > 0
                    and shape_right_boundary > 0
                    and shape_right_boundary > shape_left_boundary
                ), "Get shape failed."
                shape = info[
                    shape_left_boundary + 1 : shape_right_boundary
                ].split(",")
1730
                shape = [int(x.strip()) for x in shape]
1731
                dtype_factor = 1
1732
                total_static_input_size += reduce(lambda x, y: x * y, shape, 1)
1733
                if op.type == "c_embedding":
1734 1735 1736
                    arg_name_lower = (
                        "w" if arg_name_lower == "weight" else "ids"
                    )
1737 1738 1739 1740 1741
                for arg_name in op.input_names:
                    if arg_name.lower() == arg_name_lower:
                        for var_name in op.input(arg_name):
                            var = vars[var_name]
                            total_actual_input_size += reduce(
1742 1743
                                lambda x, y: x * y, var.shape
                            )
1744
                        break
1745 1746 1747
        assert (
            total_static_input_size > 0 and total_actual_input_size > 0
        ), "Get input size failed."
1748

1749 1750 1751
        actual_runtime = (
            total_actual_input_size / total_static_input_size * runtime
        )
1752 1753
        return actual_runtime

1754
    import paddle.cost_model as cm
1755

1756
    cost_model = cm.CostModel()
1757 1758 1759 1760 1761 1762 1763 1764 1765
    cost_model.static_cost_data()
    DEFAULT_MULTIPLE = 2
    OP_NAME_MAPPING = {
        "c_embedding": "embedding",
        "matmul_v2": "matmul",
        "transpose2": "transpose",
        "reshape2": "reshape",
        "unsqueeze2": "unsqueeze",
        "reduce_sum": "sum",
1766
        "elementwise_div": "divide",
1767 1768 1769
    }

    standalone_cost_data = []
1770 1771
    # skip ops
    not_enum_ops = [
1772 1773 1774 1775
        "create_py_reader",
        "create_double_buffer_reader",
        "read",
        "assign",
1776
    ]
1777 1778 1779 1780 1781 1782 1783 1784
    for distributed_program in distributed_programs:
        cost_data = {}
        vars = distributed_program.global_block().vars
        for op in distributed_program.global_block().ops:
            runtime = 0
            if op.type in not_enum_ops:
                cost_data[op.desc.id()] = runtime
                continue
1785 1786 1787 1788 1789
            dtype = (
                str(vars[op.input_arg_names[0]].dtype)
                if op.input_arg_names
                else "float32"
            )
1790 1791 1792 1793 1794
            if int(op.attr('op_role')) == int(OpRole.Backward):
                if "_grad" in op.type:
                    forward_op_name = op.type[:-5]
                    if forward_op_name in OP_NAME_MAPPING.keys():
                        forward_op_name = OP_NAME_MAPPING[forward_op_name]
1795 1796 1797
                    op_cost = cost_model.get_static_op_time(
                        forward_op_name, forward=False, dtype=dtype
                    )
1798 1799 1800
                    if op_cost:
                        runtime = _compute_runtime(op_cost, op, vars)
                    else:
1801 1802 1803
                        op_cost = cost_model.get_static_op_time(
                            forward_op_name, dtype=dtype
                        )
1804 1805 1806
                        if op_cost:
                            runtime = 2 * _compute_runtime(op_cost, op, vars)
            elif int(op.attr('op_role')) == int(OpRole.Forward):
1807 1808 1809 1810 1811
                op_name = (
                    OP_NAME_MAPPING[op.type]
                    if op.type in OP_NAME_MAPPING.keys()
                    else op.type
                )
1812 1813 1814 1815 1816 1817 1818 1819 1820
                op_cost = cost_model.get_static_op_time(op_name)
                if op_cost:
                    runtime = _compute_runtime(op_cost, op, vars)

            cost_data[op.desc.id()] = runtime

        standalone_cost_data.append(cost_data)

    return standalone_cost_data
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835


def set_dist_op_desc_original_id(dist_op_desc, op_desc, dist_context):
    op_id = op_desc.id()
    op_original_id = op_desc.original_id()
    # First, try to set the original id to the id of the op_desc
    if op_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_id)
        return
    # Second, try to set the original id to the original_id of the op_desc
    elif op_original_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_original_id)
        return
    # Third, print error infomation if we cannot find the original id
    else:
1836 1837 1838
        raise AssertionError(
            "Cannot find the original id in the distributed context"
        )
1839 1840 1841 1842 1843 1844 1845 1846


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]
1847 1848 1849 1850


def debug_program(program, path, name):
    filename = os.path.join(
1851 1852
        path, name + '_program' + ".%d" % (paddle.distributed.get_rank())
    )
1853 1854
    with open(filename, 'w') as f:
        f.write(str(program))
1855 1856 1857


def ring_id_to_process_group(ring_id):
1858 1859
    from .process_group import get_all_process_groups

1860 1861 1862 1863
    for g in get_all_process_groups():
        if g.id == ring_id:
            return g
    return None
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874


def find_higher_order_backward_op(program):
    higher_order_op_suffix = ['_grad_grad', 'triple_grad']
    for block in program.blocks:
        for op in block.ops:
            for suffix in higher_order_op_suffix:
                if suffix in op.type:
                    return True

    return False
Z
zhaoyingli 已提交
1875 1876


1877 1878 1879 1880 1881 1882 1883 1884 1885
def get_var_numel(var):
    """
    input:
        - var: variable
    return:
        number of elemnet in var
    """
    assert isinstance(var, Variable)
    assert -1 not in var.shape
1886
    return reduce(lambda x, y: x * y, var.shape, 1)
1887 1888


Z
zhaoyingli 已提交
1889 1890 1891
def get_lr(optimizer):
    if isinstance(optimizer, paddle.optimizer.Optimizer):
        return optimizer.get_lr()
1892
    elif isinstance(optimizer, paddle.static.Optimizer):
Z
zhaoyingli 已提交
1893 1894 1895 1896 1897 1898
        if isinstance(optimizer._learning_rate, float):
            return optimizer._learning_rate
        else:
            return optimizer._learning_rate()
    else:
        raise TypeError(
1899
            "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
1900
            " or `paddle.static.Optimizer`, but got {}.".format(type(optimizer))
1901
        )
1902 1903 1904 1905


def initialize_pg_in_full_mode(all_process_groups, cur_rank):
    import socket
1906

1907
    from ...collective import _get_global_env
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931

    has_recv_by_socket = []
    # This is a magic number
    magic_num = 500
    genv = _get_global_env()
    cur_rank_ip, cur_rank_port = genv.current_endpoint.split(":")
    cur_rank_recv_port = int(cur_rank_port) + magic_num
    server_socket = None
    # Large enough for recv rank
    buff_size = 1024
    server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server_socket.bind((cur_rank_ip, cur_rank_recv_port))
    # The 10 is an empirical value
    server_socket.listen(10)
    client_sockets = {}
    for process_group in all_process_groups:
        if cur_rank not in process_group.ranks:
            continue
        if len(process_group.ranks) == 2:
            index = process_group.ranks.index(cur_rank)
            is_send = True if index == 0 else False
            if is_send:
                recv_rank = process_group.ranks[1]
                recv_rank_ip, recv_rank_port = genv.trainer_endpoints[
1932 1933
                    recv_rank
                ].split(":")
1934
                connect_port = int(recv_rank_port) + magic_num
1935 1936 1937
                client_socket = socket.socket(
                    socket.AF_INET, socket.SOCK_STREAM
                )
1938 1939 1940 1941 1942 1943
                client_socket.connect((recv_rank_ip, connect_port))
                client_socket.send(str(cur_rank).encode('utf-8'))
                rank = client_socket.recv(buff_size).decode('utf-8')
                rank = int(rank)
                if rank != recv_rank:
                    raise ValueError(
1944 1945 1946 1947
                        "Please check comm pair, the recv rank should be {} but got {}.".format(
                            recv_rank, rank
                        )
                    )
1948
                else:
1949 1950 1951 1952 1953
                    print(
                        "It is able to instantiate {} as sender now.".format(
                            process_group.ranks
                        )
                    )
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
                client_socket.close()
            else:
                send_rank = process_group.ranks[0]
                while True:
                    if send_rank not in has_recv_by_socket:
                        client_socket, recv_addr = server_socket.accept()
                        rank = int(client_socket.recv(buff_size).decode())
                        client_sockets[rank] = client_socket
                        has_recv_by_socket.append(rank)
                    else:
                        client_sockets[send_rank].send(
1965 1966
                            str(cur_rank).encode("utf-8")
                        )
1967
                        client_sockets[send_rank].close()
1968 1969 1970 1971 1972
                        print(
                            "It is able to instantiate {} as recver now.".format(
                                process_group.ranks
                            )
                        )
1973 1974 1975
                        break
        process_group.instantiate()
    server_socket.close()
1976 1977


1978 1979 1980 1981
def is_recompute_op(op):
    return op.has_attr('op_namescope') and "/auto_parallel/rc" in op.attr(
        'op_namescope'
    )
1982

1983 1984

def set_recompute_segments(model, losses, strategy, program):
1985
    from ...passes.auto_parallel_recompute import RecomputeState
1986 1987

    if not losses:
1988 1989 1990 1991 1992 1993 1994 1995 1996
        return

    recompute = strategy.recompute
    if not recompute.enable:
        return

    # NOTE: hack to enable recompute in engine api for GPT-3
    # TODO support more PaddleNLP/CV models here
    # extract ckpts by specific model
1997
    ckpts = []
1998
    if isinstance(model, paddle.nn.Layer):
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
        if (
            hasattr(model, "gpt")
            and model.__class__.__name__
            in [
                'GPTForPretraining',
                'GPTForPretrainingAuto',
            ]
            and hasattr(model.gpt, "checkpoints")
        ):
            ckpts = model.gpt.checkpoints
2009 2010 2011
            # last recompute segment is not need to recompute
            if len(ckpts) > 2:
                ckpts.pop()
2012
        else:
2013
            ckpts = recompute.checkpoints
2014
    else:
2015
        ckpts = recompute.checkpoints
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
    if not ckpts:
        return

    block = program.global_block()
    rc_state = RecomputeState(block, block.ops)
    rc_state.build_stats()
    checkpoints = rc_state.sort_checkpoints(ckpts)

    segments = []
    start_idx = -1
    pre_segment_end_idx = -1
    while start_idx + 1 < len(checkpoints):
        if start_idx == -1:
            ckpt_name = checkpoints[start_idx + 1]
            if ckpt_name not in rc_state.var_op_deps:
                start_idx += 1
                continue
            op_idx_list = rc_state.var_op_deps[ckpt_name]["var_as_output_ops"]
            if op_idx_list and max(op_idx_list) > 0:
                segments.append([0, max(op_idx_list) + 1])
        else:
            flag, min_idx, max_idx = rc_state.is_subgraph(
                [checkpoints[start_idx]], [checkpoints[start_idx + 1]]
            )
            if flag:
                min_idx = rc_state._update_segment_start(
                    min_idx, pre_segment_end_idx
                )
                segments.append([min_idx, max_idx + 1])
            else:
                logging.debug(
                    "Could not recompute op range [{}] - [{}] ".format(
                        min_idx, max_idx + 1
                    )
                )
        start_idx += 1

    for i, segment in enumerate(segments):
        for j in range(segment[0], segment[1]):
            block.ops[j]._set_attr(
                'op_namescope', "/auto_parallel/rc_" + str(i)
            )
2059 2060


2061 2062 2063 2064 2065 2066
def get_input_split_info(cur_rank, var, dist_context):
    # deduce how the input data is split among the cluster
    tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
    process_mesh = tensor_dist_attr.process_mesh
    dims_mapping = tensor_dist_attr.dims_mapping

2067
    if cur_rank not in process_mesh.process_ids:
2068 2069 2070 2071 2072
        rank_id = _get_corresponding_rank(dist_context, process_mesh, cur_rank)
    else:
        rank_id = cur_rank

    batch_size_axis = dims_mapping[0]
2073
    if batch_size_axis > -1 and process_mesh.shape[batch_size_axis] > 1:
2074
        group_ranks = _get_comm_group(
2075 2076
            process_mesh.process_ids,
            process_mesh.shape,
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
            batch_size_axis,
            rank_id,
        )
        return len(group_ranks), group_ranks.index(rank_id)

    return 1, 0


def validate_opt(optimizer):
    if optimizer is not None:
        optimizer._parameter_list = None
        optimizer._param_groups = None
    return optimizer
2090 2091


2092
def set_data_parallel(x):
2093
    from ..interface import ProcessMesh, shard_tensor
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
    from .process_group import get_world_process_group

    world_ranks = get_world_process_group().ranks
    process_mesh = ProcessMesh(world_ranks, ['dp'])
    shard_spec = ['dp' if len(world_ranks) > 1 else None] + [
        None for _ in range(len(x.shape) - 1)
    ]

    return shard_tensor(x, process_mesh, shard_spec)


def is_naive_data_parallel(dist_context):
    # Navie data parallel only completes dist_attr once from the front to back.
    if not dist_context.data_parallel:
        return False

    ops_type = [
        op.type
        for op in dist_context._original_serial_main_program.global_block().ops
    ]
    if (
        not set(ops_type) & set(__not_naive_data_parallel_op__)
    ) and dist_context.data_parallel:
        return True
    return False


2121 2122 2123 2124 2125 2126 2127 2128 2129
def _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.dims_mapping = py_dist_attr.dims_mapping
2130
    cpp_dist_attr.annotated = py_dist_attr.annotated
2131 2132 2133


def _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
2134
    from ..process_mesh import ProcessMesh
2135 2136

    cpp_process_mesh = cpp_dist_attr.process_mesh
2137
    if cpp_process_mesh is not None:
2138 2139 2140 2141 2142
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.dims_mapping = cpp_dist_attr.dims_mapping
2143
    py_dist_attr.annotated = cpp_dist_attr.annotated
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155


def _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr):
    py_process_mesh = py_dist_attr.process_mesh
    if py_process_mesh is not None:
        cpp_dist_attr.process_mesh = core.ProcessMesh(
            py_process_mesh.shape,
            py_process_mesh.process_ids,
            ["d" + str(i) for i in range(len(py_process_mesh.shape))],
        )
    cpp_dist_attr.impl_type = py_dist_attr.impl_type
    cpp_dist_attr.impl_idx = py_dist_attr.impl_idx
2156 2157
    cpp_dist_attr.is_recompute = py_dist_attr.is_recompute
    cpp_dist_attr.annotated = py_dist_attr.annotated
2158 2159 2160 2161 2162 2163 2164 2165 2166
    for name, py_tensor_dist_attr in py_dist_attr.inputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)
    for name, py_tensor_dist_attr in py_dist_attr.outputs_dist_attrs.items():
        cpp_tensor_dist_attr = cpp_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_to_cpp(cpp_tensor_dist_attr, py_tensor_dist_attr)


def _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr):
2167
    from ..process_mesh import ProcessMesh
2168 2169

    cpp_process_mesh = cpp_dist_attr.process_mesh
2170
    if cpp_process_mesh is not None:
2171 2172 2173 2174 2175 2176
        py_dist_attr.process_mesh = ProcessMesh(
            shape=cpp_process_mesh.shape,
            process_ids=cpp_process_mesh.process_ids,
        )
    py_dist_attr.impl_type = cpp_dist_attr.impl_type
    py_dist_attr.impl_idx = cpp_dist_attr.impl_idx
2177 2178
    py_dist_attr.is_recompute = cpp_dist_attr.is_recompute
    py_dist_attr.annotated = cpp_dist_attr.annotated
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
    for name, cpp_tensor_dist_attr in cpp_dist_attr.inputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_input_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )
    for name, cpp_tensor_dist_attr in cpp_dist_attr.outputs_dist_attrs.items():
        py_tensor_dist_attr = py_dist_attr.get_output_dist_attr(name)
        _copy_tensor_dist_attr_from_cpp(
            cpp_tensor_dist_attr, py_tensor_dist_attr
        )


def _copy_dist_attr_to_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_to_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_to_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_from_cpp(dist_context):
    for dist_tensor in dist_context._dist_tensors_for_program.values():
        _copy_tensor_dist_attr_from_cpp(
            dist_tensor.serial_tensor.dist_attr, dist_tensor.dist_attr
        )

    for dist_op in dist_context._dist_ops_for_program.values():
        _copy_op_dist_attr_from_cpp(
            dist_op.serial_op.dist_attr, dist_op.dist_attr
        )


def _copy_dist_attr_to_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_to_cpp(cpp_dist_attr, py_dist_attr)


def _copy_dist_attr_from_cpp_for_graph(dist_context):
    for node in dist_context.serial_ordered_nodes:
        if node.is_var() and node.var() is not None:
            py_dist_attr = dist_context.get_tensor_dist_attr_for_graph(node)
            cpp_dist_attr = node.var().dist_attr
            _copy_tensor_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
        if node.is_op() and node.op() is not None:
            py_dist_attr = dist_context.get_op_dist_attr_for_graph(node)
            cpp_dist_attr = node.op().dist_attr
            _copy_op_dist_attr_from_cpp(cpp_dist_attr, py_dist_attr)
2237 2238 2239 2240 2241 2242


def insert_dependencies_for_two_ops(
    block,
    idx,
    prior_op,
2243
    posterior_op,
2244 2245 2246
    dist_context,
    is_recompute=False,
    sync=False,
2247
    op_namescope=None,
2248 2249
):
    """
2250
    dependency: prior_op should be run before posterior_op
2251 2252 2253 2254 2255 2256 2257 2258
    """

    assert (
        len(prior_op.output_arg_names) >= 1
    ), "first op of dependency should at least have one output. [{}]".format(
        str(prior_op)
    )
    assert (
2259
        len(posterior_op.input_arg_names) >= 1
2260
    ), "second op of dependency should at least have one input. [{}]".format(
2261
        str(posterior_op)
2262 2263 2264 2265 2266
    )
    prior_op_mesh = dist_context.get_op_dist_attr_for_program(
        prior_op
    ).process_mesh
    posterior_mesh = dist_context.get_op_dist_attr_for_program(
2267
        posterior_op
2268 2269 2270 2271 2272 2273 2274 2275
    ).process_mesh
    assert (
        prior_op_mesh == posterior_mesh
    ), "two ops of dependency should have same mesh but got [{}] and [{}]".format(
        str(prior_op_mesh), str(posterior_mesh)
    )

    def _select_best_depend_var(vars):
2276 2277 2278
        # parameter should not be dep var since it maybe partition in sharding pass
        vars = [var for var in vars if not var.is_parameter]
        assert len(vars) > 0
2279 2280 2281 2282 2283 2284 2285 2286 2287
        vars_with_numels = [(var, get_var_numel(var)) for var in vars]
        vars_with_numels.sort(key=lambda x: x[1])

        return vars_with_numels[-1][0]

    first_var = _select_best_depend_var(
        [block.var(name) for name in prior_op.output_arg_names]
    )
    second_var = _select_best_depend_var(
2288
        [block.var(name) for name in posterior_op.input_arg_names]
2289 2290
    )

2291
    return insert_dependencies_for_vars(
2292 2293 2294 2295 2296 2297
        block,
        idx,
        first_var,
        second_var,
        dist_context,
        OpRole.Backward,
2298 2299 2300 2301 2302
        process_mesh=prior_op_mesh,
        is_recompute=is_recompute,
        sync=sync,
        op_namescope=op_namescope,
        use_nop=False,
2303 2304 2305
    )


2306
def insert_dependencies_for_vars(
2307 2308
    block,
    idx,
2309 2310
    prior_vars,
    post_vars,
2311 2312 2313 2314 2315
    dist_context,
    oprole,
    process_mesh=None,
    is_recompute=False,
    sync=False,
2316 2317
    op_namescope=None,
    use_nop=False,
2318 2319
):
    """
2320
    dependency: op that generates prior_vars should be run before op that generates post_vars
2321
    """
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

    if isinstance(prior_vars, Variable):
        prior_vars = [prior_vars]
    if isinstance(post_vars, Variable):
        post_vars = [post_vars]
    for prior_var in prior_vars:
        assert block.has_var(prior_var.name)
    for post_var in post_vars:
        assert block.has_var(post_var.name)

2332 2333
    if process_mesh is None:
        process_mesh = dist_context.get_tensor_dist_attr_for_program(
2334
            post_vars[0]
2335 2336 2337
        ).process_mesh
    assert process_mesh is not None

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
    use_nop = True
    if use_nop:
        depend_op = block._insert_op_without_sync(
            idx,
            type='nop',
            inputs={
                "X": prior_vars,
            },
            outputs={"Out": post_vars},
        )
    else:
        depend_op = block._insert_op_without_sync(
            idx,
            type='depend',
            inputs={
                "X": post_vars,
                "Dep": prior_vars,
            },
            outputs={"Out": post_vars},
        )
2358
    depend_op._set_attr(OP_ROLE_KEY, oprole)
2359

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
    # TODO: condition can be removed when add correct dist_attr for coalesce vars and ops in sharding_pass
    if is_recompute or process_mesh != [-1]:
        depend_op_dist_attr = OperatorDistAttr()
        depend_op_dist_attr.impl_idx = 0
        depend_op_dist_attr.impl_type = "default"
        depend_op_dist_attr.process_mesh = process_mesh
        depend_op_dist_attr.is_recompute = is_recompute
        for input_varname in depend_op.desc.input_arg_names():
            var = block.var(input_varname)
            mapping = dist_context.get_tensor_dist_attr_for_program(
                var
            ).dims_mapping
            depend_op_dist_attr.set_input_dims_mapping(input_varname, mapping)
        for output_varname in depend_op.desc.output_arg_names():
            var = block.var(output_varname)
            mapping = dist_context.get_tensor_dist_attr_for_program(
                var
            ).dims_mapping
            depend_op_dist_attr.set_output_dims_mapping(output_varname, mapping)
        dist_context.set_op_dist_attr_for_program(
            depend_op, depend_op_dist_attr
        )

2383
    if op_namescope is not None:
2384
        depend_op._set_attr('op_namescope', f"/{op_namescope}")
2385 2386 2387

    if sync:
        block._sync_with_cpp()
2388 2389 2390 2391

    return depend_op


2392 2393 2394 2395 2396
def is_dep_skip_op(op):
    if "c_" in op.type:
        return True

    return False
2397 2398 2399 2400 2401 2402 2403


def _dygraph_guard_(func):
    def __impl__(*args, **kwargs):
        if paddle.framework.in_dynamic_mode():
            return func(*args, **kwargs)
        else:
2404
            with paddle.base.dygraph.guard():
2405 2406 2407 2408 2409 2410
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423


def use_new_executor():
    new_executor_micro_batching = os.environ.get(
        'FLAGS_new_executor_micro_batching', None
    )
    return new_executor_micro_batching in [
        1,
        '1',
        True,
        'True',
        'true',
    ]
2424 2425


2426 2427 2428 2429 2430 2431 2432 2433 2434
def get_pp_stage(dist_context, rank):
    pp_idx = None
    for idx, process_mesh in enumerate(dist_context.process_meshes):
        if rank in process_mesh.process_ids:
            pp_idx = idx
            break
    return pp_idx


2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
def wrap_data_for_completion(
    dist_op, input_names: list, output_names: list, attr_names: list
):
    """
    Get data used in inferring distributed attributes, including:
      1. DistTensorSpec for each input and output tensor of this dist_op.
      2. Operator attributes of this dist_op, e.g. transpose_x in matmul op.

    Args:
      dist_op: the DistributedOperator
      input_names: list, name of the dist_op's input tensors
      output_names: list, name of the dist_op's output tensors
      attr_names: list, attribute name of the dist_op's corresponding serial op

    Returns:
      input_specs: list, DistTensorSpec for each input tensor of the dist_op
      output_specs: list, DistTensorSpec for each output tensor of the dist_op
      attrs: dict, attribute map of the dist op

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
    Examples:
        .. code-block:: python

            >>> # doctest: +SKIP('Depends on other ops.')
            >>> from paddle.distributed.auto_parallel.static.utils import wrap_data_for_completion

            >>> op_desc = dist_op.serial_op.desc
            >>> input_name_list = []
            >>> output_name_list = []

            >>> input_name_list.append(op_desc.input('X')[0]) # 'X' is the arg name for op
            >>> input_name_list.append(op_desc.input('Y')[0])
            >>> output_name_list.append(op_desc.output('Out')[0])

            >>> attr_name_list = ['trans_x', 'trans_y']
            >>> input_specs, output_specs, attrs = wrap_data_for_completion(
            ...        dist_op,
            ...        input_name_list,
            ...        output_name_list,
            ...        attr_name_list)
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

    """

    input_specs = []
    output_specs = []
    attrs = {}

    serial_op = dist_op.serial_op

    # Construct each input tensor's DistTensorSpec with shape and dist_attr
    for name in input_names:
        tensor_dist_attr = dist_op.dist_attr.get_input_dist_attr(name)
        var = serial_op.block._var_recursive(name)
        tensor_shape = var.shape
        dist_spec = DistTensorSpec(tensor_shape, tensor_dist_attr)
        input_specs.append(dist_spec)

    # Construct each output tensor's DistTensorSpec with shape and dist_attr
    for name in output_names:
        tensor_dist_attr = dist_op.dist_attr.get_output_dist_attr(name)
        var = serial_op.block._var_recursive(name)
        tensor_shape = var.shape
        dist_spec = DistTensorSpec(tensor_shape, tensor_dist_attr)
        output_specs.append(dist_spec)

    for attr_name in attr_names:
        attrs[attr_name] = serial_op.desc.attr(attr_name)

    return input_specs, output_specs, attrs