multiclass_nms_op.cc 25.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

J
jerrywgz 已提交
14
#include <glog/logging.h>
15

16
#include "paddle/fluid/framework/infershape_utils.h"
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/phi/infermeta/ternary.h"
Z
zhiboniu 已提交
19
#include "paddle/phi/kernels/funcs/detection/nms_util.h"
20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

27 28 29 30 31 32 33 34 35 36
inline std::vector<size_t> GetNmsLodFromRoisNum(const Tensor* rois_num) {
  std::vector<size_t> rois_lod;
  auto* rois_num_data = rois_num->data<int>();
  rois_lod.push_back(static_cast<size_t>(0));
  for (int i = 0; i < rois_num->numel(); ++i) {
    rois_lod.push_back(rois_lod.back() + static_cast<size_t>(rois_num_data[i]));
  }
  return rois_lod;
}

D
dangqingqing 已提交
37
class MultiClassNMSOp : public framework::OperatorWithKernel {
38 39 40 41
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
42 43 44
    OP_INOUT_CHECK(ctx->HasInput("BBoxes"), "Input", "BBoxes", "MultiClassNMS");
    OP_INOUT_CHECK(ctx->HasInput("Scores"), "Input", "Scores", "MultiClassNMS");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MultiClassNMS");
D
dangqingqing 已提交
45
    auto box_dims = ctx->GetInputDim("BBoxes");
46
    auto score_dims = ctx->GetInputDim("Scores");
J
jerrywgz 已提交
47
    auto score_size = score_dims.size();
48

49
    if (ctx->IsRuntime()) {
50 51
      PADDLE_ENFORCE_EQ(score_size == 2 || score_size == 3,
                        true,
52 53 54 55
                        platform::errors::InvalidArgument(
                            "The rank of Input(Scores) must be 2 or 3"
                            ". But received rank = %d",
                            score_size));
56 57
      PADDLE_ENFORCE_EQ(box_dims.size(),
                        3,
X
xiaoting 已提交
58 59
                        platform::errors::InvalidArgument(
                            "The rank of Input(BBoxes) must be 3"
60
                            ". But received rank = %d",
X
xiaoting 已提交
61
                            box_dims.size()));
J
jerrywgz 已提交
62
      if (score_size == 3) {
63 64 65 66 67 68 69 70 71 72 73 74 75
        PADDLE_ENFORCE_EQ(box_dims[2] == 4 || box_dims[2] == 8 ||
                              box_dims[2] == 16 || box_dims[2] == 24 ||
                              box_dims[2] == 32,
                          true,
                          platform::errors::InvalidArgument(
                              "The last dimension of Input"
                              "(BBoxes) must be 4 or 8, "
                              "represents the layout of coordinate "
                              "[xmin, ymin, xmax, ymax] or "
                              "4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
                              "8 points: [xi, yi] i= 1,2,...,8 or "
                              "12 points: [xi, yi] i= 1,2,...,12 or "
                              "16 points: [xi, yi] i= 1,2,...,16"));
J
jerrywgz 已提交
76
        PADDLE_ENFORCE_EQ(
77 78
            box_dims[1],
            score_dims[2],
X
xiaoting 已提交
79 80 81 82 83
            platform::errors::InvalidArgument(
                "The 2nd dimension of Input(BBoxes) must be equal to "
                "last dimension of Input(Scores), which represents the "
                "predicted bboxes."
                "But received box_dims[1](%s) != socre_dims[2](%s)",
84 85
                box_dims[1],
                score_dims[2]));
J
jerrywgz 已提交
86
      } else {
87 88
        PADDLE_ENFORCE_EQ(box_dims[2],
                          4,
X
xiaoting 已提交
89
                          platform::errors::InvalidArgument(
90 91
                              "The last dimension of Input"
                              "(BBoxes) must be 4. But received dimension = %d",
X
xiaoting 已提交
92
                              box_dims[2]));
93
        PADDLE_ENFORCE_EQ(
94 95
            box_dims[1],
            score_dims[1],
96 97 98 99
            platform::errors::InvalidArgument(
                "The 2nd dimension of Input"
                "(BBoxes) must be equal to the 2nd dimension of Input(Scores). "
                "But received box dimension = %d, score dimension = %d",
100 101
                box_dims[1],
                score_dims[1]));
J
jerrywgz 已提交
102
      }
103
    }
104 105
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
J
jerrywgz 已提交
106
    if (score_size == 3) {
107
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
J
jerrywgz 已提交
108 109 110
    } else {
      ctx->SetOutputDim("Out", {-1, box_dims[2] + 2});
    }
111 112 113
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Out", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
114
  }
D
dangqingqing 已提交
115 116 117 118 119

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
120
        OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
121
        platform::CPUPlace());
D
dangqingqing 已提交
122
  }
123 124
};

125 126
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
127 128
                   const framework::Tensor& items,
                   const int class_id,
129 130 131 132 133 134
                   framework::Tensor* one_class_item) {
  T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
  const T* items_data = items.data<T>();
  const int64_t num_item = items.dims()[0];
  const int class_num = items.dims()[1];
  if (items.dims().size() == 3) {
J
jerrywgz 已提交
135 136 137 138 139 140 141 142 143 144
    int item_size = items.dims()[2];
    for (int i = 0; i < num_item; ++i) {
      std::memcpy(item_data + i * item_size,
                  items_data + i * class_num * item_size + class_id * item_size,
                  sizeof(T) * item_size);
    }
  } else {
    for (int i = 0; i < num_item; ++i) {
      item_data[i] = items_data[i * class_num + class_id];
    }
145 146 147
  }
}

148
template <typename T>
D
dangqingqing 已提交
149
class MultiClassNMSKernel : public framework::OpKernel<T> {
150
 public:
151 152 153 154 155 156 157
  void NMSFast(const Tensor& bbox,
               const Tensor& scores,
               const T score_threshold,
               const T nms_threshold,
               const T eta,
               const int64_t top_k,
               std::vector<int>* selected_indices,
J
jerrywgz 已提交
158
               const bool normalized) const {
159 160 161
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
Y
Yipeng 已提交
162 163
    // 8: [x1 y1 x2 y2 x3 y3 x4 y4]
    // 16, 24, or 32: [x1 y1 x2 y2 ...  xn yn], n = 8, 12 or 16
164 165 166 167 168
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
Z
zhiboniu 已提交
169 170
    phi::funcs::GetMaxScoreIndex(
        scores_data, score_threshold, top_k, &sorted_indices);
171 172 173 174 175 176 177 178

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
179
      for (size_t k = 0; k < selected_indices->size(); ++k) {
180 181
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
Y
Yipeng 已提交
182 183 184
          T overlap = T(0.);
          // 4: [xmin ymin xmax ymax]
          if (box_size == 4) {
Z
zhiboniu 已提交
185 186 187 188
            overlap =
                phi::funcs::JaccardOverlap<T>(bbox_data + idx * box_size,
                                              bbox_data + kept_idx * box_size,
                                              normalized);
Y
Yipeng 已提交
189 190 191 192
          }
          // 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
          if (box_size == 8 || box_size == 16 || box_size == 24 ||
              box_size == 32) {
Z
zhiboniu 已提交
193 194 195 196
            overlap = phi::funcs::PolyIoU<T>(bbox_data + idx * box_size,
                                             bbox_data + kept_idx * box_size,
                                             box_size,
                                             normalized);
Y
Yipeng 已提交
197
          }
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

D
dangqingqing 已提交
213
  void MultiClassNMS(const framework::ExecutionContext& ctx,
214 215
                     const Tensor& scores,
                     const Tensor& bboxes,
J
jerrywgz 已提交
216
                     const int scores_size,
217 218
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
D
dangqingqing 已提交
219 220 221
    int64_t background_label = ctx.Attr<int>("background_label");
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
J
jerrywgz 已提交
222
    bool normalized = ctx.Attr<bool>("normalized");
223 224
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
D
dangqingqing 已提交
225
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
L
Leo Chen 已提交
226
    auto& dev_ctx = ctx.template device_context<phi::CPUContext>();
227 228

    int num_det = 0;
229 230 231 232 233 234 235 236 237 238 239 240 241

    int64_t class_num = scores_size == 3 ? scores.dims()[0] : scores.dims()[1];
    Tensor bbox_slice, score_slice;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      if (scores_size == 3) {
        score_slice = scores.Slice(c, c + 1);
        bbox_slice = bboxes;
      } else {
        score_slice.Resize({scores.dims()[0], 1});
        bbox_slice.Resize({scores.dims()[0], 4});
        SliceOneClass<T>(dev_ctx, scores, c, &score_slice);
        SliceOneClass<T>(dev_ctx, bboxes, c, &bbox_slice);
J
jerrywgz 已提交
242
      }
243 244 245 246 247 248 249 250
      NMSFast(bbox_slice,
              score_slice,
              score_threshold,
              nms_threshold,
              nms_eta,
              nms_top_k,
              &((*indices)[c]),
              normalized);
251
      if (scores_size == 2) {
J
jerrywgz 已提交
252 253
        std::stable_sort((*indices)[c].begin(), (*indices)[c].end());
      }
254
      num_det += (*indices)[c].size();
255 256
    }

257
    *num_nmsed_out = num_det;
258 259
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
J
jerrywgz 已提交
260
      const T* sdata;
261
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
262
      for (const auto& it : *indices) {
263
        int label = it.first;
J
jerrywgz 已提交
264
        if (scores_size == 3) {
265
          sdata = scores_data + label * scores.dims()[1];
J
jerrywgz 已提交
266
        } else {
267 268 269
          score_slice.Resize({scores.dims()[0], 1});
          SliceOneClass<T>(dev_ctx, scores, label, &score_slice);
          sdata = score_slice.data<T>();
J
jerrywgz 已提交
270
        }
271
        const std::vector<int>& label_indices = it.second;
272
        for (size_t j = 0; j < label_indices.size(); ++j) {
273 274 275 276 277 278
          int idx = label_indices[j];
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
279 280
      std::stable_sort(score_index_pairs.begin(),
                       score_index_pairs.end(),
Z
zhiboniu 已提交
281
                       phi::funcs::SortScorePairDescend<std::pair<int, int>>);
282 283 284 285
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
286
      for (size_t j = 0; j < score_index_pairs.size(); ++j) {
287 288 289 290
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
J
jerrywgz 已提交
291 292 293 294 295 296 297
      if (scores_size == 2) {
        for (const auto& it : new_indices) {
          int label = it.first;
          std::stable_sort(new_indices[label].begin(),
                           new_indices[label].end());
        }
      }
298 299
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
300 301 302
    }
  }

J
jerrywgz 已提交
303
  void MultiClassOutput(const platform::DeviceContext& ctx,
304 305
                        const Tensor& scores,
                        const Tensor& bboxes,
306
                        const std::map<int, std::vector<int>>& selected_indices,
307 308 309 310
                        const int scores_size,
                        Tensor* outs,
                        int* oindices = nullptr,
                        const int offset = 0) const {
J
jerrywgz 已提交
311
    int64_t class_num = scores.dims()[1];
Y
Yipeng 已提交
312 313
    int64_t predict_dim = scores.dims()[1];
    int64_t box_size = bboxes.dims()[1];
J
jerrywgz 已提交
314 315 316 317
    if (scores_size == 2) {
      box_size = bboxes.dims()[2];
    }
    int64_t out_dim = box_size + 2;
318 319 320
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();
J
jerrywgz 已提交
321 322 323
    const T* sdata;
    Tensor bbox;
    bbox.Resize({scores.dims()[0], box_size});
324 325 326
    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
D
dangqingqing 已提交
327
      const std::vector<int>& indices = it.second;
J
jerrywgz 已提交
328 329 330 331 332
      if (scores_size == 2) {
        SliceOneClass<T>(ctx, bboxes, label, &bbox);
      } else {
        sdata = scores_data + label * predict_dim;
      }
333

334
      for (size_t j = 0; j < indices.size(); ++j) {
335
        int idx = indices[j];
J
jerrywgz 已提交
336 337 338 339 340
        odata[count * out_dim] = label;  // label
        const T* bdata;
        if (scores_size == 3) {
          bdata = bboxes_data + idx * box_size;
          odata[count * out_dim + 1] = sdata[idx];  // score
341 342 343
          if (oindices != nullptr) {
            oindices[count] = offset + idx;
          }
J
jerrywgz 已提交
344 345 346
        } else {
          bdata = bbox.data<T>() + idx * box_size;
          odata[count * out_dim + 1] = *(scores_data + idx * class_num + label);
347 348 349
          if (oindices != nullptr) {
            oindices[count] = offset + idx * class_num + label;
          }
J
jerrywgz 已提交
350
        }
Y
Yipeng 已提交
351 352
        // xmin, ymin, xmax, ymax or multi-points coordinates
        std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
D
dangqingqing 已提交
353
        count++;
354 355 356 357 358
      }
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
J
jerrywgz 已提交
359 360
    auto* boxes = ctx.Input<LoDTensor>("BBoxes");
    auto* scores = ctx.Input<LoDTensor>("Scores");
361
    auto* outs = ctx.Output<LoDTensor>("Out");
362 363
    bool return_index = ctx.HasOutput("Index") ? true : false;
    auto index = ctx.Output<LoDTensor>("Index");
364 365
    bool has_roisnum = ctx.HasInput("RoisNum") ? true : false;
    auto rois_num = ctx.Input<Tensor>("RoisNum");
366
    auto score_dims = scores->dims();
367
    auto score_size = score_dims.size();
L
Leo Chen 已提交
368
    auto& dev_ctx = ctx.template device_context<phi::CPUContext>();
369 370 371

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
J
jerrywgz 已提交
372 373 374 375
    int64_t batch_size = score_dims[0];
    int64_t box_dim = boxes->dims()[2];
    int64_t out_dim = box_dim + 2;
    int num_nmsed_out = 0;
376
    Tensor boxes_slice, scores_slice;
377 378 379 380 381 382
    int n = 0;
    if (has_roisnum) {
      n = score_size == 3 ? batch_size : rois_num->numel();
    } else {
      n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1;
    }
383
    for (int i = 0; i < n; ++i) {
384
      std::map<int, std::vector<int>> indices;
385 386 387 388 389 390
      if (score_size == 3) {
        scores_slice = scores->Slice(i, i + 1);
        scores_slice.Resize({score_dims[1], score_dims[2]});
        boxes_slice = boxes->Slice(i, i + 1);
        boxes_slice.Resize({score_dims[2], box_dim});
      } else {
391 392 393 394 395 396
        std::vector<size_t> boxes_lod;
        if (has_roisnum) {
          boxes_lod = GetNmsLodFromRoisNum(rois_num);
        } else {
          boxes_lod = boxes->lod().back();
        }
397 398 399 400 401
        if (boxes_lod[i] == boxes_lod[i + 1]) {
          all_indices.push_back(indices);
          batch_starts.push_back(batch_starts.back());
          continue;
        }
402 403
        scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
        boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
J
jerrywgz 已提交
404
      }
405 406
      MultiClassNMS(
          ctx, scores_slice, boxes_slice, score_size, &indices, &num_nmsed_out);
407 408
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
J
jerrywgz 已提交
409 410 411 412
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
413 414 415 416 417 418 419 420
      if (return_index) {
        outs->mutable_data<T>({0, out_dim}, ctx.GetPlace());
        index->mutable_data<int>({0, 1}, ctx.GetPlace());
      } else {
        T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
        od[0] = -1;
        batch_starts = {0, 1};
      }
J
jerrywgz 已提交
421 422
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
423 424
      int offset = 0;
      int* oindices = nullptr;
425 426 427 428 429 430
      for (int i = 0; i < n; ++i) {
        if (score_size == 3) {
          scores_slice = scores->Slice(i, i + 1);
          boxes_slice = boxes->Slice(i, i + 1);
          scores_slice.Resize({score_dims[1], score_dims[2]});
          boxes_slice.Resize({score_dims[2], box_dim});
431 432 433
          if (return_index) {
            offset = i * score_dims[2];
          }
434
        } else {
435 436 437 438 439 440
          std::vector<size_t> boxes_lod;
          if (has_roisnum) {
            boxes_lod = GetNmsLodFromRoisNum(rois_num);
          } else {
            boxes_lod = boxes->lod().back();
          }
441
          if (boxes_lod[i] == boxes_lod[i + 1]) continue;
442 443
          scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]);
          boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]);
444 445 446
          if (return_index) {
            offset = boxes_lod[i] * score_dims[1];
          }
J
jerrywgz 已提交
447
        }
448

449 450 451 452
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
453 454 455 456 457
          if (return_index) {
            int* output_idx =
                index->mutable_data<int>({num_kept, 1}, ctx.GetPlace());
            oindices = output_idx + s;
          }
458 459 460 461 462 463 464 465
          MultiClassOutput(dev_ctx,
                           scores_slice,
                           boxes_slice,
                           all_indices[i],
                           score_dims.size(),
                           &out,
                           oindices,
                           offset);
466 467 468
        }
      }
    }
469 470 471 472 473 474 475 476 477
    if (ctx.HasOutput("NmsRoisNum")) {
      auto* nms_rois_num = ctx.Output<Tensor>("NmsRoisNum");
      nms_rois_num->mutable_data<int>({n}, ctx.GetPlace());
      int* num_data = nms_rois_num->data<int>();
      for (int i = 1; i <= n; i++) {
        num_data[i - 1] = batch_starts[i] - batch_starts[i - 1];
      }
      nms_rois_num->Resize({n});
    }
478 479 480

    framework::LoD lod;
    lod.emplace_back(batch_starts);
481 482 483
    if (return_index) {
      index->set_lod(lod);
    }
484 485 486 487
    outs->set_lod(lod);
  }
};

D
dangqingqing 已提交
488
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
489
 public:
Y
Yu Yang 已提交
490
  void Make() override {
D
dangqingqing 已提交
491
    AddInput("BBoxes",
J
jerrywgz 已提交
492 493
             "Two types of bboxes are supported:"
             "1. (Tensor) A 3-D Tensor with shape "
Y
Yipeng 已提交
494
             "[N, M, 4 or 8 16 24 32] represents the "
495 496
             "predicted locations of M bounding bboxes, N is the batch size. "
             "Each bounding box has four coordinate values and the layout is "
J
jerrywgz 已提交
497
             "[xmin, ymin, xmax, ymax], when box size equals to 4."
498 499
             "2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]"
             "M is the number of bounding boxes, C is the class number");
D
dangqingqing 已提交
500
    AddInput("Scores",
J
jerrywgz 已提交
501 502
             "Two types of scores are supported:"
             "1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
D
dangqingqing 已提交
503 504 505
             "predicted confidence predictions. N is the batch size, C is the "
             "class number, M is number of bounding boxes. For each category "
             "there are total M scores which corresponding M bounding boxes. "
506 507 508 509
             " Please note, M is equal to the 2nd dimension of BBoxes. "
             "2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. "
             "M is the number of bbox, C is the class number. In this case, "
             "Input BBoxes should be the second case with shape [M, C, 4].");
D
dangqingqing 已提交
510
    AddAttr<int>(
511
        "background_label",
翟飞跃 已提交
512
        "(int, default: 0) "
D
dangqingqing 已提交
513 514
        "The index of background label, the background label will be ignored. "
        "If set to -1, then all categories will be considered.")
515
        .SetDefault(0);
D
dangqingqing 已提交
516 517
    AddAttr<float>("score_threshold",
                   "(float) "
D
dangqingqing 已提交
518 519
                   "Threshold to filter out bounding boxes with low "
                   "confidence score. If not provided, consider all boxes.");
D
dangqingqing 已提交
520 521 522
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections to be kept according to the "
T
tianshuo78520a 已提交
523
                 "confidences after the filtering detections based on "
D
dangqingqing 已提交
524
                 "score_threshold");
525
    AddAttr<float>("nms_threshold",
翟飞跃 已提交
526
                   "(float, default: 0.3) "
D
dangqingqing 已提交
527
                   "The threshold to be used in NMS.")
528 529 530
        .SetDefault(0.3);
    AddAttr<float>("nms_eta",
                   "(float) "
D
dangqingqing 已提交
531
                   "The parameter for adaptive NMS.")
532
        .SetDefault(1.0);
D
dangqingqing 已提交
533 534 535 536
    AddAttr<int>("keep_top_k",
                 "(int64_t) "
                 "Number of total bboxes to be kept per image after NMS "
                 "step. -1 means keeping all bboxes after NMS step.");
J
jerrywgz 已提交
537
    AddAttr<bool>("normalized",
J
jerrywgz 已提交
538
                  "(bool, default true) "
J
jerrywgz 已提交
539 540
                  "Whether detections are normalized.")
        .SetDefault(true);
541 542 543
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
Y
Yipeng 已提交
544 545 546 547 548 549
              "[label, confidence, xmin, ymin, xmax, ymax] or "
              "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
              "detections. Each row has 10 values: "
              "[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
              "total number of detections in this mini-batch."
              "For each instance, "
550 551 552 553
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
554
This operator is to do multi-class non maximum suppression (NMS) on a batched
555
of boxes and scores.
D
dangqingqing 已提交
556 557 558 559 560 561
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
562
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
D
dangqingqing 已提交
563 564
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
565 566 567
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
568
means there is no detected bbox for this image.
569 570 571 572
)DOC");
  }
};

573 574 575 576 577 578 579 580 581 582 583 584 585 586
class MultiClassNMS2Op : public MultiClassNMSOp {
 public:
  MultiClassNMS2Op(const std::string& type,
                   const framework::VariableNameMap& inputs,
                   const framework::VariableNameMap& outputs,
                   const framework::AttributeMap& attrs)
      : MultiClassNMSOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
    MultiClassNMSOp::InferShape(ctx);

    auto score_dims = ctx->GetInputDim("Scores");
    auto score_size = score_dims.size();
    if (score_size == 3) {
587
      ctx->SetOutputDim("Index", {-1, 1});
588 589 590
    } else {
      ctx->SetOutputDim("Index", {-1, 1});
    }
591 592 593
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("Index", std::max(ctx->GetLoDLevel("BBoxes"), 1));
    }
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
  }
};

class MultiClassNMS2OpMaker : public MultiClassNMSOpMaker {
 public:
  void Make() override {
    MultiClassNMSOpMaker::Make();
    AddOutput("Index",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 1] represents the "
              "index of selected bbox. The index is the absolute index cross "
              "batches.")
        .AsIntermediate();
  }
};

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
class MultiClassNMS3Op : public MultiClassNMS2Op {
 public:
  MultiClassNMS3Op(const std::string& type,
                   const framework::VariableNameMap& inputs,
                   const framework::VariableNameMap& outputs,
                   const framework::AttributeMap& attrs)
      : MultiClassNMS2Op(type, inputs, outputs, attrs) {}
};

class MultiClassNMS3OpMaker : public MultiClassNMS2OpMaker {
 public:
  void Make() override {
    MultiClassNMS2OpMaker::Make();
    AddInput("RoisNum",
             "(Tensor) The number of RoIs in shape (B),"
             "B is the number of images")
        .AsDispensable();
    AddOutput("NmsRoisNum", "(Tensor), The number of NMS RoIs in each image")
        .AsDispensable();
  }
};

631 632 633
}  // namespace operators
}  // namespace paddle

634 635 636 637
DECLARE_INFER_SHAPE_FUNCTOR(multiclass_nms3,
                            MultiClassNMSShapeFunctor,
                            PD_INFER_META(phi::MultiClassNMSInferMeta));

638
namespace ops = paddle::operators;
H
hong 已提交
639
REGISTER_OPERATOR(
640 641 642
    multiclass_nms,
    ops::MultiClassNMSOp,
    ops::MultiClassNMSOpMaker,
H
hong 已提交
643 644
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
645 646
REGISTER_OP_CPU_KERNEL(multiclass_nms,
                       ops::MultiClassNMSKernel<float>,
D
dangqingqing 已提交
647
                       ops::MultiClassNMSKernel<double>);
H
hong 已提交
648
REGISTER_OPERATOR(
649 650 651
    multiclass_nms2,
    ops::MultiClassNMS2Op,
    ops::MultiClassNMS2OpMaker,
H
hong 已提交
652 653
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
654 655
REGISTER_OP_CPU_KERNEL(multiclass_nms2,
                       ops::MultiClassNMSKernel<float>,
656
                       ops::MultiClassNMSKernel<double>);
657 658

REGISTER_OPERATOR(
659 660 661
    multiclass_nms3,
    ops::MultiClassNMS3Op,
    ops::MultiClassNMS3OpMaker,
662
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
663 664
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    MultiClassNMSShapeFunctor);