test_trt_convert_swish.py 5.5 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
from functools import partial
17
from typing import Any, Dict, List
18 19 20 21 22 23

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer
24 25 26 27 28 29 30 31


class TrtConvertSwishTest(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        return True

    def sample_program_configs(self):
        def generate_input1(dims, attrs: List[Dict[str, Any]]):
32 33 34
            if dims == 0:
                return np.ones([]).astype(np.float32)
            elif dims == 1:
35 36 37 38 39 40 41 42
                return np.ones([3]).astype(np.float32)
            elif dims == 2:
                return np.ones([3, 64]).astype(np.float32)
            elif dims == 3:
                return np.ones([3, 64, 64]).astype(np.float32)
            else:
                return np.ones([1, 3, 64, 64]).astype(np.float32)

43
        for dims in [0, 1, 2, 3, 4]:
44 45 46 47 48
            for beta in [1.0, 2.0, 3.0]:
                self.dims = dims

                dics = [{"beta": beta}]

49 50 51 52 53 54 55 56 57 58
                ops_config = [
                    {
                        "op_type": "swish",
                        "op_inputs": {
                            "X": ["input_data"],
                        },
                        "op_outputs": {"Out": ["output_data"]},
                        "op_attrs": dics[0],
                    }
                ]
59 60 61 62 63 64
                ops = self.generate_op_config(ops_config)

                program_config = ProgramConfig(
                    ops=ops,
                    weights={},
                    inputs={
65 66 67
                        "input_data": TensorConfig(
                            data_gen=partial(generate_input1, dims, dics)
                        )
68
                    },
69 70
                    outputs=["output_data"],
                )
71 72 73 74

                yield program_config

    def sample_predictor_configs(
75 76
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
77
        def generate_dynamic_shape(attrs):
78 79 80 81 82
            if self.dims == 0:
                self.dynamic_shape.min_input_shape = {"input_data": []}
                self.dynamic_shape.max_input_shape = {"input_data": []}
                self.dynamic_shape.opt_input_shape = {"input_data": []}
            elif self.dims == 1:
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
                self.dynamic_shape.min_input_shape = {"input_data": [1]}
                self.dynamic_shape.max_input_shape = {"input_data": [128]}
                self.dynamic_shape.opt_input_shape = {"input_data": [64]}
            elif self.dims == 2:
                self.dynamic_shape.min_input_shape = {"input_data": [1, 32]}
                self.dynamic_shape.max_input_shape = {"input_data": [4, 64]}
                self.dynamic_shape.opt_input_shape = {"input_data": [3, 64]}
            elif self.dims == 3:
                self.dynamic_shape.min_input_shape = {"input_data": [1, 32, 32]}
                self.dynamic_shape.max_input_shape = {
                    "input_data": [10, 64, 64]
                }
                self.dynamic_shape.opt_input_shape = {"input_data": [3, 64, 64]}
            else:
                self.dynamic_shape.min_input_shape = {
                    "input_data": [1, 3, 32, 32]
                }
                self.dynamic_shape.max_input_shape = {
                    "input_data": [4, 3, 64, 64]
                }
                self.dynamic_shape.opt_input_shape = {
                    "input_data": [1, 3, 64, 64]
                }

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(attrs, dynamic_shape):
113
            if (self.dims == 1 or self.dims == 0) and not dynamic_shape:
114 115 116 117
                return 0, 3
            return 1, 2

        attrs = [
118
            program_config.ops[i].attrs for i in range(len(program_config.ops))
119 120 121 122 123 124
        ]

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
125 126
            attrs, False
        ), 1e-5
127 128
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
129 130
            attrs, False
        ), (1e-3, 1e-3)
131 132 133 134

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
135
        yield self.create_inference_config(), generate_trt_nodes_num(
136 137
            attrs, True
        ), 1e-5
138
        self.trt_param.precision = paddle_infer.PrecisionType.Half
139
        yield self.create_inference_config(), generate_trt_nodes_num(
140 141
            attrs, True
        ), (1e-3, 1e-3)
142 143 144 145 146 147 148

    def test(self):
        self.run_test()


if __name__ == "__main__":
    unittest.main()