test_trt_convert_swish.py 5.1 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
from functools import partial
17
from typing import Any, Dict, List
18 19 20 21 22 23

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


class TrtConvertSwishTest(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        return True

    def sample_program_configs(self):
        def generate_input1(dims, attrs: List[Dict[str, Any]]):
            if dims == 1:
                return np.ones([3]).astype(np.float32)
            elif dims == 2:
                return np.ones([3, 64]).astype(np.float32)
            elif dims == 3:
                return np.ones([3, 64, 64]).astype(np.float32)
            else:
                return np.ones([1, 3, 64, 64]).astype(np.float32)

        for dims in [1, 2, 3, 4]:
            for beta in [1.0, 2.0, 3.0]:
                self.dims = dims

                dics = [{"beta": beta}]

47 48 49 50 51 52 53 54 55 56
                ops_config = [
                    {
                        "op_type": "swish",
                        "op_inputs": {
                            "X": ["input_data"],
                        },
                        "op_outputs": {"Out": ["output_data"]},
                        "op_attrs": dics[0],
                    }
                ]
57 58 59 60 61 62
                ops = self.generate_op_config(ops_config)

                program_config = ProgramConfig(
                    ops=ops,
                    weights={},
                    inputs={
63 64 65
                        "input_data": TensorConfig(
                            data_gen=partial(generate_input1, dims, dics)
                        )
66
                    },
67 68
                    outputs=["output_data"],
                )
69 70 71 72

                yield program_config

    def sample_predictor_configs(
73 74
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        def generate_dynamic_shape(attrs):
            if self.dims == 1:
                self.dynamic_shape.min_input_shape = {"input_data": [1]}
                self.dynamic_shape.max_input_shape = {"input_data": [128]}
                self.dynamic_shape.opt_input_shape = {"input_data": [64]}
            elif self.dims == 2:
                self.dynamic_shape.min_input_shape = {"input_data": [1, 32]}
                self.dynamic_shape.max_input_shape = {"input_data": [4, 64]}
                self.dynamic_shape.opt_input_shape = {"input_data": [3, 64]}
            elif self.dims == 3:
                self.dynamic_shape.min_input_shape = {"input_data": [1, 32, 32]}
                self.dynamic_shape.max_input_shape = {
                    "input_data": [10, 64, 64]
                }
                self.dynamic_shape.opt_input_shape = {"input_data": [3, 64, 64]}
            else:
                self.dynamic_shape.min_input_shape = {
                    "input_data": [1, 3, 32, 32]
                }
                self.dynamic_shape.max_input_shape = {
                    "input_data": [4, 3, 64, 64]
                }
                self.dynamic_shape.opt_input_shape = {
                    "input_data": [1, 3, 64, 64]
                }

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(attrs, dynamic_shape):
            if self.dims == 1:
                return 0, 3
            return 1, 2

        attrs = [
112
            program_config.ops[i].attrs for i in range(len(program_config.ops))
113 114 115 116 117 118
        ]

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
119 120
            attrs, False
        ), 1e-5
121 122
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
123 124
            attrs, False
        ), (1e-3, 1e-3)
125 126 127 128

        # for dynamic_shape
        generate_dynamic_shape(attrs)
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
129
        yield self.create_inference_config(), generate_trt_nodes_num(
130 131
            attrs, True
        ), 1e-5
132
        self.trt_param.precision = paddle_infer.PrecisionType.Half
133
        yield self.create_inference_config(), generate_trt_nodes_num(
134 135
            attrs, True
        ), (1e-3, 1e-3)
136 137 138 139 140 141 142

    def test(self):
        self.run_test()


if __name__ == "__main__":
    unittest.main()