test_trt_convert_sum.py 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
from functools import partial
17
from typing import List
18 19 20 21 22 23

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39


class TrtConvertSumTest(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        return True

    def sample_program_configs(self):
        def generate_input1(batch):
            if self.dims == 4:
                return np.ones([batch, 3, 24, 24]).astype(np.float32)
            elif self.dims == 3:
                return np.ones([batch, 3, 24]).astype(np.float32)
            elif self.dims == 2:
                return np.ones([batch, 24]).astype(np.float32)
            elif self.dims == 1:
                return np.ones([24]).astype(np.float32)
40 41
            elif self.dims == 0:
                return np.ones([]).astype(np.float32)
42 43 44 45 46 47 48 49 50 51

        def generate_input2(batch):
            if self.dims == 4:
                return np.ones([batch, 3, 24, 24]).astype(np.float32)
            elif self.dims == 3:
                return np.ones([batch, 3, 24]).astype(np.float32)
            elif self.dims == 2:
                return np.ones([batch, 24]).astype(np.float32)
            elif self.dims == 1:
                return np.ones([24]).astype(np.float32)
52 53
            elif self.dims == 0:
                return np.ones([]).astype(np.float32)
54 55 56 57 58 59 60 61 62 63

        def generate_input3(batch):
            if self.dims == 4:
                return np.ones([batch, 3, 24, 24]).astype(np.float32)
            elif self.dims == 3:
                return np.ones([batch, 3, 24]).astype(np.float32)
            elif self.dims == 2:
                return np.ones([batch, 24]).astype(np.float32)
            elif self.dims == 1:
                return np.ones([24]).astype(np.float32)
64 65
            elif self.dims == 0:
                return np.ones([]).astype(np.float32)
66

67
        for dims in [0, 1, 2, 3, 4]:
68 69
            for batch in [1, 4]:
                self.dims = dims
70 71 72 73 74 75 76 77
                ops_config = [
                    {
                        "op_type": "sum",
                        "op_inputs": {"X": ["input1", "input2", "input3"]},
                        "op_outputs": {"Out": ["output"]},
                        "op_attrs": {},
                    }
                ]
78 79 80 81 82
                ops = self.generate_op_config(ops_config)
                program_config = ProgramConfig(
                    ops=ops,
                    weights={},
                    inputs={
83 84 85 86 87 88 89 90 91
                        "input1": TensorConfig(
                            data_gen=partial(generate_input1, batch)
                        ),
                        "input2": TensorConfig(
                            data_gen=partial(generate_input2, batch)
                        ),
                        "input3": TensorConfig(
                            data_gen=partial(generate_input3, batch)
                        ),
92
                    },
93 94
                    outputs=["output"],
                )
95 96 97 98

                yield program_config

    def sample_predictor_configs(
99 100
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
101 102 103 104 105
        def generate_dynamic_shape():
            if self.dims == 4:
                self.dynamic_shape.min_input_shape = {
                    "input1": [1, 3, 24, 24],
                    "input2": [1, 3, 24, 24],
106
                    "input3": [1, 3, 24, 24],
107 108 109 110
                }
                self.dynamic_shape.max_input_shape = {
                    "input1": [4, 3, 48, 48],
                    "input2": [4, 3, 48, 48],
111
                    "input3": [4, 3, 48, 48],
112 113 114 115
                }
                self.dynamic_shape.opt_input_shape = {
                    "input1": [1, 3, 24, 24],
                    "input2": [1, 3, 24, 24],
116
                    "input3": [1, 3, 24, 24],
117 118 119 120 121
                }
            elif self.dims == 3:
                self.dynamic_shape.min_input_shape = {
                    "input1": [1, 3, 24],
                    "input2": [1, 3, 24],
122
                    "input3": [1, 3, 24],
123 124 125 126
                }
                self.dynamic_shape.max_input_shape = {
                    "input1": [4, 3, 48],
                    "input2": [4, 3, 48],
127
                    "input3": [4, 3, 48],
128 129 130 131
                }
                self.dynamic_shape.opt_input_shape = {
                    "input1": [1, 3, 24],
                    "input2": [1, 3, 24],
132
                    "input3": [1, 3, 24],
133 134 135 136 137
                }
            elif self.dims == 2:
                self.dynamic_shape.min_input_shape = {
                    "input1": [1, 24],
                    "input2": [1, 24],
138
                    "input3": [1, 24],
139 140 141 142
                }
                self.dynamic_shape.max_input_shape = {
                    "input1": [4, 48],
                    "input2": [4, 48],
143
                    "input3": [4, 48],
144 145 146 147
                }
                self.dynamic_shape.opt_input_shape = {
                    "input1": [1, 24],
                    "input2": [1, 24],
148
                    "input3": [1, 24],
149 150 151 152 153
                }
            elif self.dims == 1:
                self.dynamic_shape.min_input_shape = {
                    "input1": [24],
                    "input2": [24],
154
                    "input3": [24],
155 156 157 158
                }
                self.dynamic_shape.max_input_shape = {
                    "input1": [48],
                    "input2": [48],
159
                    "input3": [48],
160 161 162 163
                }
                self.dynamic_shape.opt_input_shape = {
                    "input1": [24],
                    "input2": [24],
164
                    "input3": [24],
165
                }
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
            elif self.dims == 0:
                self.dynamic_shape.min_input_shape = {
                    "input1": [],
                    "input2": [],
                    "input3": [],
                }
                self.dynamic_shape.max_input_shape = {
                    "input1": [],
                    "input2": [],
                    "input3": [],
                }
                self.dynamic_shape.opt_input_shape = {
                    "input1": [],
                    "input2": [],
                    "input3": [],
                }
182 183 184 185 186 187 188

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(dynamic_shape):
189
            if (self.dims == 1 or self.dims == 0) and not dynamic_shape:
190 191 192 193 194 195 196
                return 0, 5
            return 1, 4

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
197 198
            False
        ), 1e-5
199 200
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
201 202
            False
        ), 1e-3
203 204 205 206 207 208

        # for dynamic_shape
        generate_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
        self.trt_param.precision = paddle_infer.PrecisionType.Half
209
        yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-3
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

    def test(self):
        self.run_test()


# special case when sum having olny one input
class TrtConvertSumTest1(TrtLayerAutoScanTest):
    def is_program_valid(self, program_config: ProgramConfig) -> bool:
        return True

    def sample_program_configs(self):
        def generate_input1(batch):
            if self.dims == 4:
                return np.ones([batch, 3, 24, 24]).astype(np.float32)
            elif self.dims == 3:
                return np.ones([batch, 3, 24]).astype(np.float32)
            elif self.dims == 2:
                return np.ones([batch, 24]).astype(np.float32)
            elif self.dims == 1:
                return np.ones([24]).astype(np.float32)
230 231
            else:
                return np.ones([]).astype(np.float32)
232

233
        for dims in [0, 1, 2, 3, 4]:
234 235
            for batch in [1, 4]:
                self.dims = dims
236 237 238 239 240 241 242 243
                ops_config = [
                    {
                        "op_type": "sum",
                        "op_inputs": {"X": ["input1"]},
                        "op_outputs": {"Out": ["output"]},
                        "op_attrs": {},
                    }
                ]
244 245 246 247 248
                ops = self.generate_op_config(ops_config)
                program_config = ProgramConfig(
                    ops=ops,
                    weights={},
                    inputs={
249 250 251
                        "input1": TensorConfig(
                            data_gen=partial(generate_input1, batch)
                        ),
252
                    },
253 254
                    outputs=["output"],
                )
255 256 257 258

                yield program_config

    def sample_predictor_configs(
259 260
        self, program_config
    ) -> (paddle_infer.Config, List[int], float):
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        def generate_dynamic_shape():
            if self.dims == 4:
                self.dynamic_shape.min_input_shape = {"input1": [1, 3, 24, 24]}
                self.dynamic_shape.max_input_shape = {"input1": [4, 3, 48, 48]}
                self.dynamic_shape.opt_input_shape = {"input1": [1, 3, 24, 24]}
            elif self.dims == 3:
                self.dynamic_shape.min_input_shape = {"input1": [1, 3, 24]}
                self.dynamic_shape.max_input_shape = {"input1": [4, 3, 48]}
                self.dynamic_shape.opt_input_shape = {"input1": [1, 3, 24]}
            elif self.dims == 2:
                self.dynamic_shape.min_input_shape = {
                    "input1": [1, 24],
                }
                self.dynamic_shape.max_input_shape = {
                    "input1": [4, 48],
                }
                self.dynamic_shape.opt_input_shape = {
                    "input1": [1, 24],
                }
            elif self.dims == 1:
                self.dynamic_shape.min_input_shape = {
                    "input1": [24],
                }
                self.dynamic_shape.max_input_shape = {
                    "input1": [48],
                }
                self.dynamic_shape.opt_input_shape = {
                    "input1": [24],
                }
290 291 292 293 294 295 296 297 298 299
            elif self.dims == 0:
                self.dynamic_shape.min_input_shape = {
                    "input1": [],
                }
                self.dynamic_shape.max_input_shape = {
                    "input1": [],
                }
                self.dynamic_shape.opt_input_shape = {
                    "input1": [],
                }
300 301 302 303 304 305 306

        def clear_dynamic_shape():
            self.dynamic_shape.min_input_shape = {}
            self.dynamic_shape.max_input_shape = {}
            self.dynamic_shape.opt_input_shape = {}

        def generate_trt_nodes_num(dynamic_shape):
307
            if (self.dims == 1 or self.dims == 0) and not dynamic_shape:
308 309 310 311 312 313 314
                return 0, 3
            return 1, 2

        # for static_shape
        clear_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(
315 316
            False
        ), 1e-5
317 318
        self.trt_param.precision = paddle_infer.PrecisionType.Half
        yield self.create_inference_config(), generate_trt_nodes_num(
319 320
            False
        ), 1e-3
321 322 323 324 325 326

        # for dynamic_shape
        generate_dynamic_shape()
        self.trt_param.precision = paddle_infer.PrecisionType.Float32
        yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
        self.trt_param.precision = paddle_infer.PrecisionType.Half
327
        yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-3
328 329 330 331 332 333 334

    def test(self):
        self.run_test()


if __name__ == "__main__":
    unittest.main()