# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertSumTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input1(batch): if self.dims == 4: return np.ones([batch, 3, 24, 24]).astype(np.float32) elif self.dims == 3: return np.ones([batch, 3, 24]).astype(np.float32) elif self.dims == 2: return np.ones([batch, 24]).astype(np.float32) elif self.dims == 1: return np.ones([24]).astype(np.float32) elif self.dims == 0: return np.ones([]).astype(np.float32) def generate_input2(batch): if self.dims == 4: return np.ones([batch, 3, 24, 24]).astype(np.float32) elif self.dims == 3: return np.ones([batch, 3, 24]).astype(np.float32) elif self.dims == 2: return np.ones([batch, 24]).astype(np.float32) elif self.dims == 1: return np.ones([24]).astype(np.float32) elif self.dims == 0: return np.ones([]).astype(np.float32) def generate_input3(batch): if self.dims == 4: return np.ones([batch, 3, 24, 24]).astype(np.float32) elif self.dims == 3: return np.ones([batch, 3, 24]).astype(np.float32) elif self.dims == 2: return np.ones([batch, 24]).astype(np.float32) elif self.dims == 1: return np.ones([24]).astype(np.float32) elif self.dims == 0: return np.ones([]).astype(np.float32) for dims in [0, 1, 2, 3, 4]: for batch in [1, 4]: self.dims = dims ops_config = [ { "op_type": "sum", "op_inputs": {"X": ["input1", "input2", "input3"]}, "op_outputs": {"Out": ["output"]}, "op_attrs": {}, } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input1": TensorConfig( data_gen=partial(generate_input1, batch) ), "input2": TensorConfig( data_gen=partial(generate_input2, batch) ), "input3": TensorConfig( data_gen=partial(generate_input3, batch) ), }, outputs=["output"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(): if self.dims == 4: self.dynamic_shape.min_input_shape = { "input1": [1, 3, 24, 24], "input2": [1, 3, 24, 24], "input3": [1, 3, 24, 24], } self.dynamic_shape.max_input_shape = { "input1": [4, 3, 48, 48], "input2": [4, 3, 48, 48], "input3": [4, 3, 48, 48], } self.dynamic_shape.opt_input_shape = { "input1": [1, 3, 24, 24], "input2": [1, 3, 24, 24], "input3": [1, 3, 24, 24], } elif self.dims == 3: self.dynamic_shape.min_input_shape = { "input1": [1, 3, 24], "input2": [1, 3, 24], "input3": [1, 3, 24], } self.dynamic_shape.max_input_shape = { "input1": [4, 3, 48], "input2": [4, 3, 48], "input3": [4, 3, 48], } self.dynamic_shape.opt_input_shape = { "input1": [1, 3, 24], "input2": [1, 3, 24], "input3": [1, 3, 24], } elif self.dims == 2: self.dynamic_shape.min_input_shape = { "input1": [1, 24], "input2": [1, 24], "input3": [1, 24], } self.dynamic_shape.max_input_shape = { "input1": [4, 48], "input2": [4, 48], "input3": [4, 48], } self.dynamic_shape.opt_input_shape = { "input1": [1, 24], "input2": [1, 24], "input3": [1, 24], } elif self.dims == 1: self.dynamic_shape.min_input_shape = { "input1": [24], "input2": [24], "input3": [24], } self.dynamic_shape.max_input_shape = { "input1": [48], "input2": [48], "input3": [48], } self.dynamic_shape.opt_input_shape = { "input1": [24], "input2": [24], "input3": [24], } elif self.dims == 0: self.dynamic_shape.min_input_shape = { "input1": [], "input2": [], "input3": [], } self.dynamic_shape.max_input_shape = { "input1": [], "input2": [], "input3": [], } self.dynamic_shape.opt_input_shape = { "input1": [], "input2": [], "input3": [], } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(dynamic_shape): if (self.dims == 1 or self.dims == 0) and not dynamic_shape: return 0, 5 return 1, 4 # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( False ), 1e-3 # for dynamic_shape generate_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-3 def test(self): self.run_test() # special case when sum having olny one input class TrtConvertSumTest1(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input1(batch): if self.dims == 4: return np.ones([batch, 3, 24, 24]).astype(np.float32) elif self.dims == 3: return np.ones([batch, 3, 24]).astype(np.float32) elif self.dims == 2: return np.ones([batch, 24]).astype(np.float32) elif self.dims == 1: return np.ones([24]).astype(np.float32) else: return np.ones([]).astype(np.float32) for dims in [0, 1, 2, 3, 4]: for batch in [1, 4]: self.dims = dims ops_config = [ { "op_type": "sum", "op_inputs": {"X": ["input1"]}, "op_outputs": {"Out": ["output"]}, "op_attrs": {}, } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input1": TensorConfig( data_gen=partial(generate_input1, batch) ), }, outputs=["output"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(): if self.dims == 4: self.dynamic_shape.min_input_shape = {"input1": [1, 3, 24, 24]} self.dynamic_shape.max_input_shape = {"input1": [4, 3, 48, 48]} self.dynamic_shape.opt_input_shape = {"input1": [1, 3, 24, 24]} elif self.dims == 3: self.dynamic_shape.min_input_shape = {"input1": [1, 3, 24]} self.dynamic_shape.max_input_shape = {"input1": [4, 3, 48]} self.dynamic_shape.opt_input_shape = {"input1": [1, 3, 24]} elif self.dims == 2: self.dynamic_shape.min_input_shape = { "input1": [1, 24], } self.dynamic_shape.max_input_shape = { "input1": [4, 48], } self.dynamic_shape.opt_input_shape = { "input1": [1, 24], } elif self.dims == 1: self.dynamic_shape.min_input_shape = { "input1": [24], } self.dynamic_shape.max_input_shape = { "input1": [48], } self.dynamic_shape.opt_input_shape = { "input1": [24], } elif self.dims == 0: self.dynamic_shape.min_input_shape = { "input1": [], } self.dynamic_shape.max_input_shape = { "input1": [], } self.dynamic_shape.opt_input_shape = { "input1": [], } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(dynamic_shape): if (self.dims == 1 or self.dims == 0) and not dynamic_shape: return 0, 3 return 1, 2 # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( False ), 1e-3 # for dynamic_shape generate_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-3 def test(self): self.run_test() if __name__ == "__main__": unittest.main()