engine.cc 9.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31
void TensorRTEngine::Build(const DescType &paddle_model) {
Y
Yan Chunwei 已提交
32 33 34 35
  PADDLE_ENFORCE(false, "not implemented");
}

void TensorRTEngine::Execute(int batch_size) {
36 37 38
  batch_size_ = batch_size;
  std::vector<void *> buffers;
  for (auto &buf : buffers_) {
Y
Yan Chunwei 已提交
39 40 41 42 43
    PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated");
    PADDLE_ENFORCE_GT(buf.max_size, 0);
    PADDLE_ENFORCE(buf.device == DeviceType::GPU);
    buffers.push_back(buf.buffer);
  }
44
  PADDLE_ENFORCE_NOT_NULL(stream_);
Y
Yan Chunwei 已提交
45
  infer_context_->enqueue(batch_size, buffers.data(), *stream_, nullptr);
Y
Yan Chunwei 已提交
46
  cudaStreamSynchronize(*stream_);
47
  SetRuntimeBatch(batch_size);
Y
Yan Chunwei 已提交
48 49 50
}

TensorRTEngine::~TensorRTEngine() {
51
  cudaStreamSynchronize(*stream_);
Y
Yan Chunwei 已提交
52
  // clean buffer
53
  for (auto &buf : buffers_) {
54
    if (buf.device == DeviceType::GPU && buf.buffer != nullptr) {
Y
Yan Chunwei 已提交
55 56 57
      PADDLE_ENFORCE_EQ(0, cudaFree(buf.buffer));
      buf.buffer = nullptr;
      buf.max_size = 0;
Y
Yan Chunwei 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    }
  }
}

void TensorRTEngine::FreezeNetwork() {
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");

  infer_context_.reset(infer_engine_->createExecutionContext());

  // allocate GPU buffers.
Y
Yan Chunwei 已提交
77
  buffers_.resize(buffer_sizes_.size());
78 79 80
  for (auto &item : buffer_sizes_) {
    // The output buffers are not set in the network building phrase, need to
    // infer from the TesorRT network.
Y
Yan Chunwei 已提交
81 82
    if (item.second == 0) {
      auto slot_offset = infer_engine_->getBindingIndex(item.first.c_str());
Y
Yan Chunwei 已提交
83
      auto dims = infer_engine_->getBindingDimensions(slot_offset);
Y
Yan Chunwei 已提交
84 85
      item.second = kDataTypeSize[static_cast<int>(
                        infer_engine_->getBindingDataType(slot_offset))] *
86
                    analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
87
      PADDLE_ENFORCE_GT(item.second, 0);
Y
Yan Chunwei 已提交
88
    }
89 90 91

    auto &buf = buffer(item.first);
    buf.max_size = item.second * max_batch_;
Y
Yan Chunwei 已提交
92
    CHECK(buf.buffer == nullptr);  // buffer should be allocated only once.
N
nhzlx 已提交
93

94
    PADDLE_ENFORCE_EQ(0, cudaMalloc(&buf.buffer, item.second * max_batch_));
95
    buf.size = 0;
N
nhzlx 已提交
96
    PADDLE_ENFORCE_LE(buf.max_size, 1 << 30);  // 10G
Y
Yan Chunwei 已提交
97
    buf.device = DeviceType::GPU;
Y
Yan Chunwei 已提交
98 99 100
  }
}

101
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
102
                                                nvinfer1::DataType dtype,
103
                                                const nvinfer1::Dims &dims) {
Y
Yan Chunwei 已提交
104 105 106 107
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
108
  auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
109
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
Y
Yan Chunwei 已提交
110
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
111
                        analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
112
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
113
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
114 115 116
  return input;
}

117 118
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
Y
Yan Chunwei 已提交
119 120 121
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

122
  auto *output = layer->getOutput(offset);
123
  SetITensor(name, output);
Y
Yan Chunwei 已提交
124 125
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
126
  PADDLE_ENFORCE(!output->isNetworkInput());
Y
Yan Chunwei 已提交
127
  infer_network_->markOutput(*output);
128
  PADDLE_ENFORCE(output->isNetworkOutput());
Y
Yan Chunwei 已提交
129 130 131 132 133
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

134
void TensorRTEngine::DeclareOutput(const std::string &name) {
L
Luo Tao 已提交
135 136 137
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

138
  auto *output = TensorRTEngine::GetITensor(name);
L
Luo Tao 已提交
139 140
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
141
  PADDLE_ENFORCE(!output->isNetworkInput());
L
Luo Tao 已提交
142 143 144 145 146 147
  infer_network_->markOutput(*output);
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

148
void *TensorRTEngine::GetOutputInGPU(const std::string &name) {
Y
Yan Chunwei 已提交
149
  return buffer(name).buffer;
Y
Yan Chunwei 已提交
150 151
}

N
nhzlx 已提交
152 153
void TensorRTEngine::GetOutputInGPU(const std::string &name, void *dst,
                                    size_t max_size) {
154
  // determine data size
N
nhzlx 已提交
155
  auto *output = TensorRTEngine::GetITensor(name);
156 157 158 159 160
  nvinfer1::Dims dims = output->getDimensions();
  auto dim_size = analysis::AccuDims(dims.d, dims.nbDims);
  size_t dst_size = dim_size * runtime_batch_ *
                    kDataTypeSize[static_cast<int>(output->getType())];

161 162 163
  auto it = buffer_sizes_.find(name);
  PADDLE_ENFORCE(it != buffer_sizes_.end());
  PADDLE_ENFORCE_GT(it->second, 0);
164
  PADDLE_ENFORCE_LE(dst_size, it->second);
N
nhzlx 已提交
165
  PADDLE_ENFORCE_GE(max_size, dst_size);
166
  auto &buf = buffer(name);
167
  PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated before");
168
  PADDLE_ENFORCE_EQ(cudaMemcpyAsync(dst, buf.buffer, dst_size,
169 170 171 172
                                    cudaMemcpyDeviceToDevice, *stream_),
                    0);
}

N
nhzlx 已提交
173 174
void TensorRTEngine::GetOutputInCPU(const std::string &name, void *dst,
                                    size_t max_size) {
Y
Yan Chunwei 已提交
175
  // determine data size
176

N
nhzlx 已提交
177
  auto *output = TensorRTEngine::GetITensor(name);
178 179 180 181
  nvinfer1::Dims dims = output->getDimensions();
  auto dim_size = analysis::AccuDims(dims.d, dims.nbDims);
  size_t dst_size = dim_size * runtime_batch_ *
                    kDataTypeSize[static_cast<int>(output->getType())];
Y
Yan Chunwei 已提交
182 183 184
  auto it = buffer_sizes_.find(name);
  PADDLE_ENFORCE(it != buffer_sizes_.end());
  PADDLE_ENFORCE_GT(it->second, 0);
185
  PADDLE_ENFORCE_LE(dst_size, it->second);
N
nhzlx 已提交
186
  PADDLE_ENFORCE_GE(max_size, dst_size);
N
nhzlx 已提交
187
  auto &buf = buffer(name);
Y
Yan Chunwei 已提交
188
  PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated before");
189
  PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buf.buffer, dst_size,
Y
Yan Chunwei 已提交
190 191 192
                                       cudaMemcpyDeviceToHost, *stream_));
}

193
Buffer &TensorRTEngine::buffer(const std::string &name) {
Y
Yan Chunwei 已提交
194 195 196 197 198 199 200
  PADDLE_ENFORCE(infer_engine_ != nullptr, "call FreezeNetwork first.");
  auto it = buffer_sizes_.find(name);
  PADDLE_ENFORCE(it != buffer_sizes_.end());
  auto slot_offset = infer_engine_->getBindingIndex(name.c_str());
  return buffers_[slot_offset];
}

201
void TensorRTEngine::SetInputFromCPU(const std::string &name, const void *data,
Y
Yan Chunwei 已提交
202
                                     size_t size) {
203
  auto &buf = buffer(name);
Y
Yan Chunwei 已提交
204
  PADDLE_ENFORCE_NOT_NULL(buf.buffer);
205 206
  PADDLE_ENFORCE_NOT_NULL(data);
  PADDLE_ENFORCE_NOT_NULL(stream_);
Y
Yan Chunwei 已提交
207 208
  PADDLE_ENFORCE_LE(size, buf.max_size, "buffer is too small");
  PADDLE_ENFORCE(buf.device == DeviceType::GPU);
209
  buf.size = size;
Y
Yan Chunwei 已提交
210 211
  PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(buf.buffer, data, size,
                                       cudaMemcpyHostToDevice, *stream_));
Y
Yan Chunwei 已提交
212 213
}

214
void TensorRTEngine::SetInputFromGPU(const std::string &name, const void *data,
215
                                     size_t size) {
216 217
  auto &buf = buffer(name);
  buf.size = size;
218 219 220 221 222 223 224
  PADDLE_ENFORCE_NOT_NULL(buf.buffer);
  PADDLE_ENFORCE_LE(size, buf.max_size, "buffer is too small");
  PADDLE_ENFORCE(buf.device == DeviceType::GPU);
  PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(buf.buffer, data, size,
                                       cudaMemcpyDeviceToDevice, *stream_));
}

225 226
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
L
Luo Tao 已提交
227
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
228
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
229 230 231 232
                    name);
  itensor_map_[name] = tensor;
}

233
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
Y
Yan Chunwei 已提交
234
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
235 236 237
  return itensor_map_[name];
}

238 239 240 241 242 243
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

Y
Yan Chunwei 已提交
244 245 246
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle