test_set_value_op.py 59.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# Test set_value op in static graph mode
16 17

import unittest
18 19
from functools import reduce

20
import numpy as np
W
wanghuancoder 已提交
21
from eager_op_test import OpTest, convert_float_to_uint16
22 23

import paddle
24
from paddle.fluid import core
25
from paddle.fluid.layer_helper import LayerHelper
26

27

28
class TestSetValueBase(unittest.TestCase):
29 30 31 32
    def setUp(self):
        paddle.enable_static()
        self.set_dtype()
        self.set_value()
33
        self.set_shape()
34 35 36
        self.data = np.ones(self.shape).astype(self.dtype)
        self.program = paddle.static.Program()

37 38 39
    def set_shape(self):
        self.shape = [2, 3, 4]

40 41 42 43 44 45 46 47 48
    def set_value(self):
        self.value = 6

    def set_dtype(self):
        self.dtype = "float32"

    def _call_setitem(self, x):
        x[0, 0] = self.value

49 50 51 52
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (0, 0), self.value)
        return x

53 54 55 56 57
    def _get_answer(self):
        self.data[0, 0] = self.value


class TestSetValueApi(TestSetValueBase):
58 59
    def _run_static(self):
        paddle.enable_static()
60 61
        with paddle.static.program_guard(self.program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
62
            x = self._call_setitem_static_api(x)
63 64 65

        exe = paddle.static.Executor(paddle.CPUPlace())
        out = exe.run(self.program, fetch_list=[x])
66 67 68 69 70 71 72 73 74 75 76
        paddle.disable_static()
        return out

    def _run_dynamic(self):
        paddle.disable_static()
        x = paddle.ones(shape=self.shape, dtype=self.dtype)
        self._call_setitem(x)
        out = x.numpy()
        paddle.enable_static()
        return out

77
    def test_api(self):
78 79
        static_out = self._run_static()
        dynamic_out = self._run_dynamic()
80
        self._get_answer()
81

82 83 84 85 86 87 88 89 90 91 92
        error_msg = (
            "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
        )
        self.assertTrue(
            (self.data == static_out).all(),
            msg=error_msg.format("static", self.data, static_out),
        )
        self.assertTrue(
            (self.data == dynamic_out).all(),
            msg=error_msg.format("dynamic", self.data, dynamic_out),
        )
93 94


95 96
# 1. Test different type of item: int, Python slice, Paddle Tensor
# 1.1 item is int
97 98 99 100
class TestSetValueItemInt(TestSetValueApi):
    def _call_setitem(self, x):
        x[0] = self.value

101 102 103 104
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, 0, self.value)
        return x

105 106 107 108
    def _get_answer(self):
        self.data[0] = self.value


109 110
# 1.2 item is slice
# 1.2.1 step is 1
111 112 113 114
class TestSetValueItemSlice(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:2] = self.value

115 116 117 118
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, slice(0, 2), self.value)
        return x

119 120 121 122 123 124 125 126
    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemSlice2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1] = self.value

127 128 129 130
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, slice(0, -1), self.value)
        return x

131 132 133 134 135 136 137 138
    def _get_answer(self):
        self.data[0:-1] = self.value


class TestSetValueItemSlice3(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1, 0:2] = self.value

139 140 141 142
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (slice(0, -1), slice(0, 2)), self.value)
        return x

143 144 145 146 147 148 149 150
    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemSlice4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:2, :] = self.value

151 152 153 154 155 156
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x, (slice(0, None), slice(1, 2), slice(None)), self.value
        )
        return x

157 158 159 160
    def _get_answer(self):
        self.data[0:, 1:2, :] = self.value


161 162 163 164
class TestSetValueItemSlice5(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:1, :] = self.value

165 166 167 168 169 170
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x, (slice(0, None), slice(1, 1), slice(None)), self.value
        )
        return x

171 172 173 174
    def _get_answer(self):
        self.data[0:, 1:1, :] = self.value


175 176 177 178 179 180 181 182 183 184
class TestSetValueItemSliceInWhile(TestSetValueApi):
    def _call_setitem(self, x):
        def cond(i, x):
            return i < 1

        def body(i, x):
            x[i] = self.value
            i = i + 1
            return i, x

185
        i = paddle.zeros(shape=(1,), dtype='int32')
186
        i, x = paddle.static.nn.while_loop(cond, body, [i, x])
187

188 189 190 191 192 193 194 195 196 197 198 199 200
    def _call_setitem_static_api(self, x):
        def cond(i, x):
            return i < 1

        def body(i, x):
            x = paddle.static.setitem(x, i, self.value)
            i = i + 1
            return i, x

        i = paddle.zeros(shape=(1,), dtype='int32')
        i, x = paddle.static.nn.while_loop(cond, body, [i, x])
        return x

201 202 203 204
    def _get_answer(self):
        self.data[0] = self.value


205 206 207 208 209 210 211 212
# 1.2.2 step > 1
class TestSetValueItemSliceStep(TestSetValueApi):
    def set_shape(self):
        self.shape = [5, 5, 5]

    def _call_setitem(self, x):
        x[0:2:2] = self.value

213 214 215 216
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, slice(0, 2, 2), self.value)
        return x

217 218 219 220 221 222 223 224 225 226 227
    def _get_answer(self):
        self.data[0:2:2] = self.value


class TestSetValueItemSliceStep2(TestSetValueApi):
    def set_shape(self):
        self.shape = [7, 5, 5]

    def _call_setitem(self, x):
        x[0:-1:3] = self.value

228 229 230 231
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, slice(0, -1, 3), self.value)
        return x

232 233 234 235 236 237 238 239
    def _get_answer(self):
        self.data[0:-1:3] = self.value


class TestSetValueItemSliceStep3(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1, 0:2, ::2] = self.value

240 241 242 243 244 245
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x, (slice(0, -1), slice(0, 2), slice(None, None, 2)), self.value
        )
        return x

246 247 248 249 250 251 252 253
    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemSliceStep4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:2:2, :] = self.value

254 255 256 257 258 259
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x, (slice(0, None), slice(1, 2, 2), slice(None)), self.value
        )
        return x

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


# 1.2.3 step < 0
class TestSetValueItemSliceNegetiveStep(TestSetValueApi):
    def set_shape(self):
        self.shape = [5, 2]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[5:2:-1] = self.value

275 276 277 278
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, slice(5, 2, -1), self.value)
        return x

279 280 281 282 283 284 285 286 287 288 289 290 291 292
    def _get_answer(self):
        self.data[5:2:-1] = self.value


class TestSetValueItemSliceNegetiveStep2(TestSetValueApi):
    def set_shape(self):
        self.shape = [5]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[1::-1] = self.value

293 294 295 296
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, slice(1, None, -1), self.value)
        return x

297 298 299 300 301 302 303 304 305 306 307 308 309 310
    def _get_answer(self):
        self.data[1::-1] = self.value


class TestSetValueItemSliceNegetiveStep3(TestSetValueApi):
    def set_shape(self):
        self.shape = [3]

    def set_value(self):
        self.value = np.array([3, 4, 5])

    def _call_setitem(self, x):
        x[::-1] = self.value

311 312 313 314
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, slice(None, None, -1), self.value)
        return x

315 316 317 318 319 320 321 322 323 324 325
    def _get_answer(self):
        self.data[::-1] = self.value


class TestSetValueItemSliceNegetiveStep4(TestSetValueApi):
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        x[2:0:-1, 0:2, ::-1] = self.value

326 327 328 329 330 331
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x, (slice(2, 0, -1), slice(0, 2), slice(None, None, -1)), self.value
        )
        return x

332 333 334 335 336 337 338
    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


# 1.3 item is Ellipsis


339 340 341 342
class TestSetValueItemEllipsis1(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, ..., 1:] = self.value

343 344 345 346 347 348
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x, (slice(0, None), ..., slice(1, None)), self.value
        )
        return x

349 350 351 352 353 354 355 356
    def _get_answer(self):
        self.data[0:, ..., 1:] = self.value


class TestSetValueItemEllipsis2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, ...] = self.value

357 358 359 360
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (slice(0, None), ...), self.value)
        return x

361 362 363 364 365 366 367 368
    def _get_answer(self):
        self.data[0:, ...] = self.value


class TestSetValueItemEllipsis3(TestSetValueApi):
    def _call_setitem(self, x):
        x[..., 1:] = self.value

369 370 371 372
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (..., slice(1, None)), self.value)
        return x

373 374 375 376 377 378 379 380
    def _get_answer(self):
        self.data[..., 1:] = self.value


class TestSetValueItemEllipsis4(TestSetValueApi):
    def _call_setitem(self, x):
        x[...] = self.value

381 382 383 384
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, ..., self.value)
        return x

385 386 387 388
    def _get_answer(self):
        self.data[...] = self.value


389 390 391
# 1.4 item is Paddle Tensor
class TestSetValueItemTensor(TestSetValueApi):
    def _call_setitem(self, x):
392
        zero = paddle.full([], 0, dtype="int32")
393 394
        x[zero] = self.value

395 396 397 398 399
    def _call_setitem_static_api(self, x):
        zero = paddle.full([], 0, dtype="int32")
        x = paddle.static.setitem(x, zero, self.value)
        return x

400 401 402 403 404 405
    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueItemTensor2(TestSetValueApi):
    def _call_setitem(self, x):
406 407
        zero = paddle.full([], 0, dtype="int32")
        two = paddle.full([], 2, dtype="int64")
408 409
        x[zero:two] = self.value

410 411 412 413 414 415
    def _call_setitem_static_api(self, x):
        zero = paddle.full([], 0, dtype="int32")
        two = paddle.full([], 2, dtype="int64")
        x = paddle.static.setitem(x, slice(zero, two), self.value)
        return x

416 417 418 419 420 421
    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemTensor3(TestSetValueApi):
    def _call_setitem(self, x):
422 423
        zero = paddle.full([], 0, dtype="int32")
        two = paddle.full([], 2, dtype="int64")
424 425
        x[zero:-1, 0:two] = self.value

426 427 428 429 430 431 432 433
    def _call_setitem_static_api(self, x):
        zero = paddle.full([], 0, dtype="int32")
        two = paddle.full([], 2, dtype="int64")
        x = paddle.static.setitem(
            x, (slice(zero, -1), slice(0, two)), self.value
        )
        return x

434 435 436 437 438 439
    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemTensor4(TestSetValueApi):
    def _call_setitem(self, x):
440 441
        zero = paddle.full([], 0, dtype="int32")
        two = paddle.full([], 2, dtype="int64")
442 443
        x[0:-1, zero:2, 0:6:two] = self.value

444 445 446 447 448 449 450 451
    def _call_setitem_static_api(self, x):
        zero = paddle.full([], 0, dtype="int32")
        two = paddle.full([], 2, dtype="int64")
        x = paddle.static.setitem(
            x, (slice(0, -1), slice(zero, 2), slice(0, 6, two)), self.value
        )
        return x

452 453 454 455 456 457
    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemTensor5(TestSetValueApi):
    def _call_setitem(self, x):
458 459
        zero = paddle.full([], 0, dtype="int32")
        two = paddle.full([], 2, dtype="int64")
460 461
        x[zero:, 1:2:two, :] = self.value

462 463 464 465 466 467 468 469
    def _call_setitem_static_api(self, x):
        zero = paddle.full([], 0, dtype="int32")
        two = paddle.full([], 2, dtype="int64")
        x = paddle.static.setitem(
            x, (slice(zero, None), slice(1, 2, two)), self.value
        )
        return x

470 471 472 473 474 475 476 477 478
    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


class TestSetValueItemTensor6(TestSetValueApi):
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
479 480
        minus1 = paddle.full([], -1, dtype="int32")
        zero = paddle.full([], 0, dtype="int32")
481 482
        x[2:zero:minus1, 0:2, 10:-6:minus1] = self.value

483 484 485 486 487 488 489 490 491 492
    def _call_setitem_static_api(self, x):
        minus1 = paddle.full([], -1, dtype="int32")
        zero = paddle.full([], 0, dtype="int64")
        x = paddle.static.setitem(
            x,
            (slice(2, zero, minus1), slice(0, 2), slice(10, -6, minus1)),
            self.value,
        )
        return x

493 494 495 496
    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


Z
zyfncg 已提交
497 498 499 500 501
# 1.5 item is None
class TestSetValueItemNone1(TestSetValueApi):
    def _call_setitem(self, x):
        x[None] = self.value

502 503 504 505
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, None, self.value)
        return x

Z
zyfncg 已提交
506 507 508 509 510 511 512 513
    def _get_answer(self):
        self.data[None] = self.value


class TestSetValueItemNone2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, None, 1] = self.value

514 515 516 517
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (0, None, 1), self.value)
        return x

Z
zyfncg 已提交
518 519 520 521 522 523 524 525
    def _get_answer(self):
        self.data[0, None, 1] = self.value


class TestSetValueItemNone3(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, None, None, 1] = self.value

526 527 528 529
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (slice(None), None, None, 1), self.value)
        return x

Z
zyfncg 已提交
530 531 532 533 534 535 536 537
    def _get_answer(self):
        self.data[:, None, None, 1] = self.value


class TestSetValueItemNone4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, 0, None, 1] = self.value

538 539 540 541
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (0, 0, None, 1), self.value)
        return x

Z
zyfncg 已提交
542 543 544 545 546 547 548 549
    def _get_answer(self):
        self.data[0, 0, None, 1] = self.value


class TestSetValueItemNone5(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, None, 0, None, 1] = self.value

550 551 552 553
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (0, None, 0, None, 1), self.value)
        return x

Z
zyfncg 已提交
554 555 556 557 558 559 560 561
    def _get_answer(self):
        self.data[0, None, 0, None, 1] = self.value


class TestSetValueItemNone6(TestSetValueApi):
    def _call_setitem(self, x):
        x[None, 0, 0, None, 0] = self.value

562 563 564 565
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (None, 0, 0, None, 0), self.value)
        return x

Z
zyfncg 已提交
566 567 568 569 570 571 572 573
    def _get_answer(self):
        self.data[None, 0, 0, None, 0] = self.value


class TestSetValueItemNone7(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, None, 1] = np.zeros(self.shape)[:, None, 0]

574 575 576 577 578 579
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x, (slice(None), None, 1), np.zeros(self.shape)[:, None, 0]
        )
        return x

Z
zyfncg 已提交
580 581 582 583 584 585 586 587
    def _get_answer(self):
        self.data[:, None, 1] = np.zeros(self.shape)[:, None, 0]


class TestSetValueItemNone8(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, 1, None] = np.zeros(self.shape)[:, 0, None]

588 589 590 591 592 593
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x, (slice(None), 1, None), np.zeros(self.shape)[:, 0, None]
        )
        return x

Z
zyfncg 已提交
594 595 596 597 598 599 600 601
    def _get_answer(self):
        self.data[:, 1, None] = np.zeros(self.shape)[:, 0, None]


class TestSetValueItemNone9(TestSetValueApi):
    def _call_setitem(self, x):
        x[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]

602 603 604 605 606 607 608 609
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x,
            (None, slice(None), 1, ..., None),
            np.zeros(self.shape)[0, 0, :, None],
        )
        return x

Z
zyfncg 已提交
610 611 612 613
    def _get_answer(self):
        self.data[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]


614 615 616 617
class TestSetValueItemNone10(TestSetValueApi):
    def _call_setitem(self, x):
        x[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]

618 619 620 621 622 623 624 625
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x,
            (..., None, slice(None), None),
            np.zeros(self.shape)[..., None, :, None],
        )
        return x

626 627 628 629
    def _get_answer(self):
        self.data[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]


630 631 632
# 1.5 item is list or Tensor of bool
# NOTE(zoooo0820): Currently, 1-D List is same to Tuple.
# The semantic of index will be modified later.
Z
zyfncg 已提交
633 634 635 636
class TestSetValueItemBool1(TestSetValueApi):
    def _call_setitem(self, x):
        x[[True, False]] = self.value

637 638 639 640
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, [True, False], self.value)
        return x

Z
zyfncg 已提交
641 642 643 644 645 646 647 648
    def _get_answer(self):
        self.data[[True, False]] = self.value


class TestSetValueItemBool2(TestSetValueApi):
    def _call_setitem(self, x):
        x[[False, False]] = self.value

649 650 651 652
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, [False, False], self.value)
        return x

Z
zyfncg 已提交
653 654 655 656 657 658 659 660
    def _get_answer(self):
        self.data[[False, False]] = self.value


class TestSetValueItemBool3(TestSetValueApi):
    def _call_setitem(self, x):
        x[[False, True]] = np.zeros(self.shape[2])

661 662 663 664
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, [False, True], np.zeros(self.shape[2]))
        return x

Z
zyfncg 已提交
665 666 667 668 669 670 671 672 673
    def _get_answer(self):
        self.data[[False, True]] = np.zeros(self.shape[2])


class TestSetValueItemBool4(TestSetValueApi):
    def _call_setitem(self, x):
        idx = paddle.assign(np.array([False, True]))
        x[idx] = np.zeros(self.shape[2])

674 675 676 677 678
    def _call_setitem_static_api(self, x):
        idx = paddle.assign(np.array([False, True]))
        x = paddle.static.setitem(x, idx, np.zeros(self.shape[2]))
        return x

Z
zyfncg 已提交
679 680 681 682 683 684 685
    def _get_answer(self):
        self.data[np.array([False, True])] = np.zeros(self.shape[2])


class TestSetValueItemBool5(TestSetValueApi):
    def _call_setitem(self, x):
        idx = paddle.assign(
686 687
            np.array([[False, True, False], [True, True, False]])
        )
Z
zyfncg 已提交
688 689
        x[idx] = self.value

690 691 692 693 694 695 696
    def _call_setitem_static_api(self, x):
        idx = paddle.assign(
            np.array([[False, True, False], [True, True, False]])
        )
        x = paddle.static.setitem(x, idx, self.value)
        return x

Z
zyfncg 已提交
697
    def _get_answer(self):
698 699 700
        self.data[
            np.array([[False, True, False], [True, True, False]])
        ] = self.value
Z
zyfncg 已提交
701 702 703 704 705 706 707


class TestSetValueItemBool6(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, ...] = 0
        x[x > 0] = self.value

708 709 710 711 712
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (0, ...), 0)
        x = paddle.static.setitem(x, x > 0, self.value)
        return x

Z
zyfncg 已提交
713 714 715 716 717
    def _get_answer(self):
        self.data[0, ...] = 0
        self.data[self.data > 0] = self.value


718
# 2. Test different type of value: int, float, numpy.ndarray, Tensor
719
# 2.1 value is int32, int64, float32, float64, bool
720 721 722 723 724 725 726 727 728 729


def create_test_value_int32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int32"

730
    cls_name = "{}_{}".format(parent.__name__, "ValueInt32")
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int32(TestSetValueItemInt)
create_test_value_int32(TestSetValueItemSlice)
create_test_value_int32(TestSetValueItemSlice2)
create_test_value_int32(TestSetValueItemSlice3)
create_test_value_int32(TestSetValueItemSlice4)


def create_test_value_int64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int64"

750
    cls_name = "{}_{}".format(parent.__name__, "ValueInt64")
751 752 753 754 755 756 757 758 759 760 761
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int64(TestSetValueItemInt)
create_test_value_int64(TestSetValueItemSlice)
create_test_value_int64(TestSetValueItemSlice2)
create_test_value_int64(TestSetValueItemSlice3)
create_test_value_int64(TestSetValueItemSlice4)


762 763 764 765 766 767 768 769
def create_test_value_fp16(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 3.7

        def set_dtype(self):
            self.dtype = "float16"

770
    cls_name = "{}_{}".format(parent.__name__, "Valuefp16")
771 772 773 774 775 776 777 778 779 780 781
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp16(TestSetValueItemInt)
create_test_value_fp16(TestSetValueItemSlice)
create_test_value_fp16(TestSetValueItemSlice2)
create_test_value_fp16(TestSetValueItemSlice3)
create_test_value_fp16(TestSetValueItemSlice4)


782 783 784 785 786 787 788 789
def create_test_value_fp32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 3.3

        def set_dtype(self):
            self.dtype = "float32"

790
    cls_name = "{}_{}".format(parent.__name__, "ValueFp32")
791 792 793 794 795 796 797 798 799 800 801
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp32(TestSetValueItemInt)
create_test_value_fp32(TestSetValueItemSlice)
create_test_value_fp32(TestSetValueItemSlice2)
create_test_value_fp32(TestSetValueItemSlice3)
create_test_value_fp32(TestSetValueItemSlice4)


802 803 804 805 806 807 808 809
def create_test_value_fp64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 2.0**127  # float32:[-2^128, 2^128)

        def set_dtype(self):
            self.dtype = "float64"

810
    cls_name = "{}_{}".format(parent.__name__, "ValueFp64")
811 812 813 814 815 816 817 818 819 820 821
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp64(TestSetValueItemInt)
create_test_value_fp64(TestSetValueItemSlice)
create_test_value_fp64(TestSetValueItemSlice2)
create_test_value_fp64(TestSetValueItemSlice3)
create_test_value_fp64(TestSetValueItemSlice4)


822 823 824 825 826 827 828 829
def create_test_value_bool(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 0

        def set_dtype(self):
            self.dtype = "bool"

830
    cls_name = "{}_{}".format(parent.__name__, "ValueBool")
831 832 833 834 835 836 837 838 839 840 841
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_bool(TestSetValueItemInt)
create_test_value_bool(TestSetValueItemSlice)
create_test_value_bool(TestSetValueItemSlice2)
create_test_value_bool(TestSetValueItemSlice3)
create_test_value_bool(TestSetValueItemSlice4)


842
# 2.2 value is numpy.array (int32, int64, float32, float64, bool)
843 844 845 846 847 848 849 850
def create_test_value_numpy_int32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([5])

        def set_dtype(self):
            self.dtype = "int32"

851
    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyInt32")
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int32(TestSetValueItemInt)
create_test_value_numpy_int32(TestSetValueItemSlice)
create_test_value_numpy_int32(TestSetValueItemSlice2)
create_test_value_numpy_int32(TestSetValueItemSlice3)
create_test_value_numpy_int32(TestSetValueItemSlice4)


def create_test_value_numpy_int64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "int64"

871
    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyInt64")
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int64(TestSetValueItemInt)
create_test_value_numpy_int64(TestSetValueItemSlice)
create_test_value_numpy_int64(TestSetValueItemSlice2)
create_test_value_numpy_int64(TestSetValueItemSlice3)
create_test_value_numpy_int64(TestSetValueItemSlice4)


def create_test_value_numpy_fp32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "float32"

891
    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyFp32")
892 893 894 895 896 897 898 899 900 901 902
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp32(TestSetValueItemInt)
create_test_value_numpy_fp32(TestSetValueItemSlice)
create_test_value_numpy_fp32(TestSetValueItemSlice2)
create_test_value_numpy_fp32(TestSetValueItemSlice3)
create_test_value_numpy_fp32(TestSetValueItemSlice4)


903 904 905 906 907 908 909 910
def create_test_value_numpy_fp64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([2**127]).astype("float64")

        def set_dtype(self):
            self.dtype = "float64"

911
    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyFp64")
912 913 914 915 916 917 918 919 920 921 922
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp64(TestSetValueItemInt)
create_test_value_numpy_fp64(TestSetValueItemSlice)
create_test_value_numpy_fp64(TestSetValueItemSlice2)
create_test_value_numpy_fp64(TestSetValueItemSlice3)
create_test_value_numpy_fp64(TestSetValueItemSlice4)


923 924 925 926 927 928 929 930
def create_test_value_numpy_bool(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([0])

        def set_dtype(self):
            self.dtype = "bool"

931
    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyBool")
932 933 934 935 936 937 938 939 940 941 942
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_bool(TestSetValueItemInt)
create_test_value_numpy_bool(TestSetValueItemSlice)
create_test_value_numpy_bool(TestSetValueItemSlice2)
create_test_value_numpy_bool(TestSetValueItemSlice3)
create_test_value_numpy_bool(TestSetValueItemSlice4)


943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
def create_test_value_complex64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 42.1 + 42.1j

        def set_dtype(self):
            self.dtype = "complex64"

    cls_name = "{}_{}".format(parent.__name__, "ValueComplex64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_complex64(TestSetValueItemInt)
create_test_value_complex64(TestSetValueItemSlice)
create_test_value_complex64(TestSetValueItemSlice2)
create_test_value_complex64(TestSetValueItemSlice3)
create_test_value_complex64(TestSetValueItemSlice4)


def create_test_value_complex128(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = complex(
                np.finfo(np.float64).max + 1j * np.finfo(np.float64).min
            )

        def set_dtype(self):
            self.dtype = "complex128"

    cls_name = "{}_{}".format(parent.__name__, "ValueComplex128")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_complex128(TestSetValueItemInt)
create_test_value_complex128(TestSetValueItemSlice)
create_test_value_complex128(TestSetValueItemSlice2)
create_test_value_complex128(TestSetValueItemSlice3)
create_test_value_complex128(TestSetValueItemSlice4)


def create_test_value_numpy_complex64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array(42.1 + 42.1j)

        def set_dtype(self):
            self.dtype = "complex64"

    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyComplex64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_complex64(TestSetValueItemInt)
create_test_value_numpy_complex64(TestSetValueItemSlice)
create_test_value_numpy_complex64(TestSetValueItemSlice2)
create_test_value_numpy_complex64(TestSetValueItemSlice3)
create_test_value_numpy_complex64(TestSetValueItemSlice4)


def create_test_value_numpy_complex128(parent):
    class TestValueInt(parent):
        def set_value(self):
            v = complex(
                np.finfo(np.float64).max + 1j * np.finfo(np.float64).min
            )
            self.value = np.array([v])

        def set_dtype(self):
            self.dtype = "complex128"

    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyComplex128")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_complex128(TestSetValueItemInt)
create_test_value_numpy_complex128(TestSetValueItemSlice)
create_test_value_numpy_complex128(TestSetValueItemSlice2)
create_test_value_numpy_complex128(TestSetValueItemSlice3)
create_test_value_numpy_complex128(TestSetValueItemSlice4)


1028 1029 1030 1031 1032 1033 1034
# 2.3 value is a Paddle Tensor (int32, int64, float32, float64, bool)
def create_test_value_tensor_int32(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "int32"

        def _call_setitem(self, x):
1035
            value = paddle.full(shape=[], fill_value=3, dtype=self.dtype)
1036 1037
            x[0, 1] = value

1038 1039 1040 1041 1042
        def _call_setitem_static_api(self, x):
            value = paddle.full(shape=[], fill_value=3, dtype=self.dtype)
            x = paddle.static.setitem(x, (0, 1), value)
            return x

1043 1044 1045
        def _get_answer(self):
            self.data[0, 1] = 3

1046
    cls_name = "{}_{}".format(parent.__name__, "ValueTensorInt32")
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int32(TestSetValueItemInt)
create_test_value_tensor_int32(TestSetValueItemSlice)
create_test_value_tensor_int32(TestSetValueItemSlice2)
create_test_value_tensor_int32(TestSetValueItemSlice3)
create_test_value_tensor_int32(TestSetValueItemSlice4)


def create_test_value_tensor_int64(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "int64"

        def _call_setitem(self, x):
1064
            value = paddle.full(shape=[], fill_value=3, dtype=self.dtype)
1065 1066
            x[0, 1] = value

1067 1068 1069 1070 1071
        def _call_setitem_static_api(self, x):
            value = paddle.full(shape=[], fill_value=3, dtype=self.dtype)
            x = paddle.static.setitem(x, (0, 1), value)
            return x

1072 1073 1074
        def _get_answer(self):
            self.data[0, 1] = 3

1075
    cls_name = "{}_{}".format(parent.__name__, "ValueTensorInt64")
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int64(TestSetValueItemInt)
create_test_value_tensor_int64(TestSetValueItemSlice)
create_test_value_tensor_int64(TestSetValueItemSlice2)
create_test_value_tensor_int64(TestSetValueItemSlice3)
create_test_value_tensor_int64(TestSetValueItemSlice4)


def create_test_value_tensor_fp32(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "float32"

        def _call_setitem(self, x):
1093
            value = paddle.full(shape=[], fill_value=3, dtype=self.dtype)
1094 1095
            x[0, 1] = value

1096 1097 1098 1099 1100
        def _call_setitem_static_api(self, x):
            value = paddle.full(shape=[], fill_value=3, dtype=self.dtype)
            x = paddle.static.setitem(x, (0, 1), value)
            return x

1101 1102 1103
        def _get_answer(self):
            self.data[0, 1] = 3

1104
    cls_name = "{}_{}".format(parent.__name__, "ValueTensorFp32")
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp32(TestSetValueItemInt)
create_test_value_tensor_fp32(TestSetValueItemSlice)
create_test_value_tensor_fp32(TestSetValueItemSlice2)
create_test_value_tensor_fp32(TestSetValueItemSlice3)
create_test_value_tensor_fp32(TestSetValueItemSlice4)


def create_test_value_tensor_fp64(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "float64"

        def _call_setitem(self, x):
1122
            value = paddle.full(shape=[], fill_value=3, dtype=self.dtype)
1123 1124
            x[0, 1] = value

1125 1126 1127 1128 1129
        def _call_setitem_static_api(self, x):
            value = paddle.full(shape=[], fill_value=3, dtype=self.dtype)
            x = paddle.static.setitem(x, (0, 1), value)
            return x

1130 1131 1132
        def _get_answer(self):
            self.data[0, 1] = 3

1133
    cls_name = "{}_{}".format(parent.__name__, "ValueTensorFp64")
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp64(TestSetValueItemInt)
create_test_value_tensor_fp64(TestSetValueItemSlice)
create_test_value_tensor_fp64(TestSetValueItemSlice2)
create_test_value_tensor_fp64(TestSetValueItemSlice3)
create_test_value_tensor_fp64(TestSetValueItemSlice4)


def create_test_value_tensor_bool(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "bool"

        def _call_setitem(self, x):
1151
            value = paddle.full(shape=[], fill_value=False, dtype=self.dtype)
1152 1153
            x[0, 1] = value

1154 1155 1156 1157 1158
        def _call_setitem_static_api(self, x):
            value = paddle.full(shape=[], fill_value=False, dtype=self.dtype)
            x = paddle.static.setitem(x, (0, 1), value)
            return x

1159 1160 1161
        def _get_answer(self):
            self.data[0, 1] = False

1162
    cls_name = "{}_{}".format(parent.__name__, "ValueTensorBool")
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_bool(TestSetValueItemInt)
create_test_value_tensor_bool(TestSetValueItemSlice)
create_test_value_tensor_bool(TestSetValueItemSlice2)
create_test_value_tensor_bool(TestSetValueItemSlice3)
create_test_value_tensor_bool(TestSetValueItemSlice4)


# 3. Test different shape of value
class TestSetValueValueShape1(TestSetValueApi):
    def set_value(self):
        self.value = np.array([3, 4, 5, 6])  # shape is (4,)

    def _call_setitem(self, x):
        x[0] = self.value

1182 1183 1184 1185
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, 0, self.value)
        return x

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape2(TestSetValueApi):
    def set_value(self):
        self.value = np.array([[3, 4, 5, 6]])  # shape is (1,4)

    def _call_setitem(self, x):
        x[0:1] = self.value

1197 1198 1199 1200
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, slice(0, 1), self.value)
        return x

1201 1202 1203 1204 1205 1206
    def _get_answer(self):
        self.data[0:1] = self.value


class TestSetValueValueShape3(TestSetValueApi):
    def set_value(self):
1207 1208 1209
        self.value = np.array(
            [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]
        )  # shape is (3,4)
1210 1211 1212 1213

    def _call_setitem(self, x):
        x[0] = self.value

1214 1215 1216 1217
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, 0, self.value)
        return x

1218 1219 1220 1221 1222 1223
    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape4(TestSetValueApi):
    def set_value(self):
1224 1225 1226 1227 1228
        self.value = np.array(
            [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]
        ).astype(
            self.dtype
        )  # shape is (3,4)
1229 1230 1231 1232

    def _call_setitem(self, x):
        x[0] = paddle.assign(self.value)  # x is Paddle.Tensor

1233 1234 1235 1236
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, 0, paddle.assign(self.value))
        return x

1237 1238 1239 1240
    def _get_answer(self):
        self.data[0] = self.value


1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
class TestSetValueValueShape5(TestSetValueApi):
    def set_value(self):
        self.value = np.array([3, 3, 3]).astype(self.dtype)

    def set_shape(self):
        self.shape = [3, 4]

    def _call_setitem(self, x):
        x[:, 0] = paddle.assign(self.value)  # x is Paddle.Tensor

1251 1252 1253 1254 1255 1256
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(
            x, (slice(None), 0), paddle.assign(self.value)
        )
        return x

1257 1258 1259 1260
    def _get_answer(self):
        self.data[:, 0] = self.value


J
JYChen 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
# This is to test case which dims of indexed Tensor is
# less than value Tensor on CPU / GPU.
class TestSetValueValueShape6(TestSetValueApi):
    def set_value(self):
        self.value = np.ones((1, 4)) * 5

    def set_shape(self):
        self.shape = [4, 4]

    def _call_setitem(self, x):
        x[:, 0] = self.value  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[:, 0] = self.value

1276 1277 1278 1279
    def _call_setitem_static_api(self, x):
        x = paddle.static.setitem(x, (slice(None), 0), self.value)
        return x

J
JYChen 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    def test_api(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        for place in places:
            paddle.set_device(place)

            static_out = self._run_static()
            dynamic_out = self._run_dynamic()
            self._get_answer()

            error_msg = (
                "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
            )
            self.assertTrue(
                (self.data == static_out).all(),
                msg=error_msg.format("static", self.data, static_out),
            )
            self.assertTrue(
                (self.data == dynamic_out).all(),
                msg=error_msg.format("dynamic", self.data, dynamic_out),
            )


1304 1305 1306
# 4. Test error
class TestError(TestSetValueBase):
    def _value_type_error(self):
1307
        with self.assertRaisesRegex(
1308 1309
            TypeError,
            "Only support to assign an integer, float, numpy.ndarray or paddle.Tensor",
1310 1311 1312
        ):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = [1]
1313 1314 1315 1316
            if paddle.in_dynamic_mode():
                x[0] = value
            else:
                x = paddle.static.setitem(x, 0, value)
1317 1318

    def _dtype_error(self):
1319
        with self.assertRaisesRegex(
1320 1321
            TypeError,
            "When assign a numpy.ndarray, integer or float to a paddle.Tensor, ",
1322
        ):
1323
            y = paddle.ones(shape=self.shape, dtype="float16")
1324 1325 1326
            y[0] = 1

    def _step_error(self):
1327
        with self.assertRaisesRegex(ValueError, "step can not be 0"):
1328
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
1329 1330 1331 1332
            if paddle.in_dynamic_mode():
                x[0:1:0] = self.value
            else:
                x = paddle.static.setitem(x, slice(0, 1, 0), self.value)
1333

1334
    def _ellipsis_error(self):
1335
        with self.assertRaisesRegex(
1336 1337
            IndexError, "An index can only have a single ellipsis"
        ):
1338 1339
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[..., ...] = self.value
1340
        with self.assertRaisesRegex(ValueError, "the start or end is None"):
1341 1342 1343
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            one = paddle.ones([1])
            x[::one] = self.value
1344

Z
zyfncg 已提交
1345 1346 1347
    def _bool_list_error(self):
        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
1348 1349 1350 1351
            if paddle.in_dynamic_mode():
                x[[True, False], [True, False]] = 0
            else:
                x = paddle.static.setitem(x, ([True, False], [True, False]), 0)
Z
zyfncg 已提交
1352 1353 1354 1355 1356

    def _bool_tensor_error(self):
        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            idx = paddle.assign([True, False, True])
1357 1358 1359 1360
            if paddle.in_dynamic_mode():
                x[idx] = 0
            else:
                x = paddle.static.setitem(x, idx, 0)
Z
zyfncg 已提交
1361

1362 1363 1364 1365 1366
    def _broadcast_mismatch(self):
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = np.array([3, 4, 5, 6, 7])
1367
            x = paddle.static.setitem(x, 0, value)
1368
        exe = paddle.static.Executor(paddle.CPUPlace())
Z
zyfncg 已提交
1369
        with self.assertRaises(ValueError):
1370 1371 1372
            exe.run(program)

    def test_error(self):
1373
        paddle.enable_static()
1374 1375
        with paddle.static.program_guard(self.program):
            self._value_type_error()
Z
zyfncg 已提交
1376 1377
            self._bool_list_error()
            self._bool_tensor_error()
1378 1379 1380
        self._broadcast_mismatch()


1381 1382 1383 1384 1385
# 5. Test backward


class Model(paddle.nn.Layer):
    def __init__(self):
1386
        super().__init__()
1387 1388 1389 1390 1391 1392 1393
        self.conv = paddle.nn.Conv2D(12, 12, 3)

    def forward(self, x, y):
        x = self.conv(x)
        y = self.conv(y)
        var = y.flatten()

1394 1395 1396 1397
        if paddle.in_dynamic_mode():
            x[0, :, 0, 0] = var
        else:
            x = paddle.static.setitem(x, (0, slice(None), 0, 0), var)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
        loss = paddle.mean(x)
        return loss, var, x


class TestBackward(unittest.TestCase):
    def test_static(self):
        paddle.enable_static()
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        x_np = np.random.random(size=(4, 4)).astype('float32')
        y_np = np.random.random(size=(4, 4)).astype('float32')
        label_np = np.random.randint(2, size=(4, 1)).astype('int64')

        with paddle.static.program_guard(main_program, startup_program):
            x = paddle.static.data(name="x", shape=[4, 4], dtype='float32')
            y = paddle.static.data(name="y", shape=[4, 4], dtype='float32')
1415 1416
            x.stop_gradient = False
            y.stop_gradient = False
1417

1418 1419 1420
            label = paddle.static.data(
                name="label", shape=[4, 1], dtype='int64'
            )
1421 1422 1423

            z = paddle.add(x, y)
            var = y[0, :]
1424
            z = paddle.static.setitem(z, (0, slice(None)), var)
1425 1426 1427

            prediction = paddle.static.nn.fc(x=z, size=2, activation='softmax')

1428 1429 1430
            cost = paddle.nn.functional.cross_entropy(
                input=prediction, label=label
            )
1431 1432 1433 1434 1435 1436 1437 1438 1439
            loss = paddle.mean(cost)
            sgd = paddle.optimizer.SGD(learning_rate=0.01)
            sgd.minimize(loss)

        exe = paddle.static.Executor(paddle.CPUPlace())
        exe.run(startup_program)

        var_grad, z_grad = exe.run(
            main_program,
1440 1441 1442
            feed={"x": x_np, "y": y_np, "label": label_np},
            fetch_list=[var.name + "@GRAD", z.name + "@GRAD"],
        )
1443 1444 1445

        self.assertTrue((var_grad == z_grad[0, :]).all())
        paddle.disable_static()
W
wanghuancoder 已提交
1446 1447

    def func_test_dynamic(self):
1448 1449 1450 1451 1452 1453 1454
        model = Model()
        x = paddle.ones([1, 12, 3, 3]).astype("float32")
        y = paddle.ones([1, 12, 3, 3]).astype("float32")
        loss, var, x = model(x, y)
        loss.backward()

        self.assertTrue(var.grad.shape == x.grad[0, :, 0, 0].shape)
1455
        self.assertTrue((0 == x.grad[0, :, 0, 0]).all())
1456 1457 1458


class TestGradientTruncated(unittest.TestCase):
1459
    def test_consistent_with_competitor(self):
1460 1461 1462 1463 1464 1465 1466 1467 1468
        paddle.disable_static()

        def set_value(t, value):
            a = t * t
            a[0, 1] = value
            y = a * a
            return y.sum()

        # case 1
1469 1470 1471
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [1, 2, 1, 3, 1, 4]
        )
1472 1473 1474 1475 1476 1477 1478 1479
        value = np.arange(100, 104, dtype="float32").reshape(1, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps, value)
        loss.backward()

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
        value_grad = np.array([[600.0, 606.0, 612.0, 618.0]])
        input_grad = np.array(
            [
                [
                    [
                        [
                            [[4.0, 32.0, 108.0, 256.0]],
                            [[500.0, 864.0, 1372.0, 2048.0]],
                            [[2916.0, 4000.0, 5324.0, 6912.0]],
                        ]
                    ],
                    [
                        [
                            [[0.0, 0.0, 0.0, 0.0]],
                            [[0.0, 0.0, 0.0, 0.0]],
                            [[0.0, 0.0, 0.0, 0.0]],
                        ]
                    ],
                ]
            ]
        )
1501 1502 1503
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1504 1505 1506 1507
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1508 1509 1510
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1511 1512 1513 1514
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

        # case 2
        array = np.arange(1, 2 * 3 * 4 + 1, dtype="float32").reshape([4, 2, 3])
        value = np.arange(100, 100 + 1, dtype="float32")

        inps2 = paddle.to_tensor(array, stop_gradient=False)
        value2 = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps2, value2)
        loss.backward()

1526 1527 1528 1529 1530 1531 1532 1533 1534
        value_grad2 = np.array([600.0])
        input_grad2 = np.array(
            [
                [[4.0, 32.0, 108.0], [0.0, 0.0, 0.0]],
                [[1372.0, 2048.0, 2916.0], [4000.0, 5324.0, 6912.0]],
                [[8788.0, 10976.0, 13500.0], [16384.0, 19652.0, 23328.0]],
                [[27436.0, 32000.0, 37044.0], [42592.0, 48668.0, 55296.0]],
            ]
        )
1535 1536 1537
        np.testing.assert_array_equal(
            inps2.grad.numpy(),
            input_grad2,
1538 1539 1540 1541
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps2.grad.numpy()
            ),
        )
1542 1543 1544
        np.testing.assert_array_equal(
            value2.grad.numpy(),
            value_grad2,
1545 1546 1547 1548
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value2.grad.numpy()
            ),
        )
1549 1550 1551 1552 1553 1554 1555 1556

        # case 3
        def set_value3(t, value):
            a = t * t
            a[0, :, 0, :] = value
            y = a * a
            return y.sum()

1557 1558 1559
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [4, 3, 1, 1, 2, 1]
        )
1560 1561 1562 1563 1564 1565 1566 1567
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value3(inps, value)
        loss.backward()

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
        value_grad = np.array([[[600.0], [606.0]]])
        input_grad = np.array(
            [
                [[[[[0.0], [0.0]]]], [[[[0.0], [0.0]]]], [[[[0.0], [0.0]]]]],
                [
                    [[[[1372.0], [2048.0]]]],
                    [[[[2916.0], [4000.0]]]],
                    [[[[5324.0], [6912.0]]]],
                ],
                [
                    [[[[8788.0], [10976.0]]]],
                    [[[[13500.0], [16384.0]]]],
                    [[[[19652.0], [23328.0]]]],
                ],
                [
                    [[[[27436.0], [32000.0]]]],
                    [[[[37044.0], [42592.0]]]],
                    [[[[48668.0], [55296.0]]]],
                ],
            ]
        )
1589 1590 1591
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1592 1593 1594 1595
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1596 1597 1598
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1599 1600 1601 1602
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1603

1604
        # case 4: step >0
1605 1606 1607 1608 1609 1610
        def set_value4(t, value):
            a = t * t
            a[0, :, 0, ::3] = value
            y = a * a
            return y.sum()

1611 1612 1613
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [2, 3, 1, 4, 1]
        )
1614 1615 1616 1617 1618 1619 1620 1621
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value4(inps, value)
        loss.backward()

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
        value_grad = np.array([[[600.0], [606.0]]])
        input_grad = np.array(
            [
                [
                    [[[0.0], [32.0], [108.0], [0.0]]],
                    [[[0.0], [864.0], [1372.0], [0.0]]],
                    [[[0.0], [4000.0], [5324.0], [0.0]]],
                ],
                [
                    [[[8788.0], [10976.0], [13500.0], [16384.0]]],
                    [[[19652.0], [23328.0], [27436.0], [32000.0]]],
                    [[[37044.0], [42592.0], [48668.0], [55296.0]]],
                ],
            ]
        )
1637 1638 1639
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1640 1641 1642 1643
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1644 1645 1646
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1647 1648 1649 1650
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

        # case 5:a[0].shape==value.shape
        def set_value5(t, value):
            a = t * t
            a[0] = value
            y = a * a
            return y.sum()

        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape([2, 3, 4])
        value = np.arange(100, 100 + 12, dtype="float32").reshape(3, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value5(inps, value)
        loss.backward()

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
        value_grad = np.array(
            [
                [200.0, 202.0, 204.0, 206.0],
                [208.0, 210.0, 212.0, 214.0],
                [216.0, 218.0, 220.0, 222.0],
            ]
        )
        input_grad = np.array(
            [
                [
                    [0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0],
                ],
                [
                    [8788.0, 10976.0, 13500.0, 16384.0],
                    [19652.0, 23328.0, 27436.0, 32000.0],
                    [37044.0, 42592.0, 48668.0, 55296.0],
                ],
            ]
        )
1689 1690 1691
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1692 1693 1694 1695
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1696 1697 1698
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1699 1700 1701 1702
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1703

1704 1705 1706 1707 1708 1709 1710 1711 1712
        # case 6: pass stop_gradient from value to x
        x = paddle.zeros([8, 8], dtype='float32')
        value = paddle.to_tensor([10], dtype='float32', stop_gradient=False)

        self.assertTrue(x.stop_gradient)
        self.assertTrue(x.is_leaf)

        x[0, :] = value

1713 1714
        self.assertTrue(not x.stop_gradient)
        self.assertTrue(not x.is_leaf)
1715

1716 1717 1718
    def test_static_graph(self):
        paddle.enable_static()

1719
        to_string = lambda x, i: x + '_' + str(i)
1720
        numel = lambda input_shape: reduce(lambda x, y: x * y, input_shape, 1)
1721 1722

        def op1(x):
1723
            value = paddle.tensor.fill_constant([1], "float32", 1)
1724
            # test stop_gradient
1725 1726
            value.stop_gradient = True
            x.stop_gradient = False
1727 1728 1729
            start = paddle.tensor.fill_constant([1], "int32", 5, force_cpu=True)
            end = paddle.tensor.fill_constant([1], "int32", 0, force_cpu=True)
            step = paddle.tensor.fill_constant([1], "int32", -2, force_cpu=True)
1730 1731 1732 1733

            inputs = {
                'Input': x,
                'ValueTensor': value,
1734 1735 1736 1737 1738 1739 1740 1741
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
1742
                ],
1743 1744 1745 1746 1747
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1748 1749 1750 1751 1752 1753
            helper.append_op(
                type="set_value",
                inputs=inputs,
                outputs={'Out': y},
                attrs={'axes': [0]},
            )
1754 1755 1756 1757

            return y, value

        def op2(x):
1758
            value = paddle.tensor.fill_constant([1, 3, 2], "float32", 1)
1759
            # test stop_gradient
1760 1761 1762 1763 1764 1765 1766 1767 1768
            value.stop_gradient = False
            x.stop_gradient = False
            attrs = {
                'axes': [0],
                'starts': [6],
                'ends': [0],
                'steps': [-4],
                'decrease_axes': [],
                'none_axes': [],
1769
                'dtype': paddle.float32,
1770 1771 1772 1773 1774 1775
            }
            inputs = {'Input': x, 'ValueTensor': value}

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1776 1777 1778
            helper.append_op(
                type="set_value", inputs=inputs, outputs={'Out': y}, attrs=attrs
            )
1779 1780 1781 1782

            return y, value

        def op3(x):
1783
            value = paddle.tensor.fill_constant([1], "float32", 1)
1784 1785
            x.stop_gradient = True
            value.stop_gradient = False
1786 1787 1788
            start = paddle.tensor.fill_constant([1], "int32", 0, force_cpu=True)
            end = paddle.tensor.fill_constant([1], "int32", 5, force_cpu=True)
            step = paddle.tensor.fill_constant([1], "int32", 3, force_cpu=True)
1789 1790 1791 1792

            inputs = {
                'Input': x,
                'ValueTensor': value,
1793 1794 1795 1796 1797 1798 1799 1800
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
1801
                ],
1802 1803 1804 1805 1806
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1807 1808 1809 1810 1811 1812
            helper.append_op(
                type="set_value",
                inputs=inputs,
                outputs={'Out': y},
                attrs={'axes': [0]},
            )
1813 1814 1815 1816 1817

            return y, value

        def set_value(array, i, op):
            name_x = to_string('x', i)
1818 1819 1820
            x = paddle.static.data(
                name=name_x, shape=array.shape, dtype='float32'
            )
1821

1822 1823
            # set_value_op in __get/setitem__ is an inplace operation.
            # When `input.stop_gradient = True` and `value.stop_gradient = False`,
1824 1825 1826
            # set_value_grad_op will not be run during backward.
            y, value = op(x)
            y2 = y + 1
1827
            loss = paddle.sum(y2)
1828 1829
            sgd = paddle.optimizer.Adam()
            sgd.minimize(loss)
1830 1831 1832 1833 1834
            place = (
                paddle.fluid.CPUPlace()
                if not paddle.fluid.core.is_compiled_with_cuda()
                else paddle.fluid.CUDAPlace(0)
            )
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            fetch_list = []
            if not x.stop_gradient:
                fetch_list.append(x.grad_name)
            if not value.stop_gradient:
                fetch_list.append(value.grad_name)
            out = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)
            return out

        input_shape = [7, 6, 5, 4, 3, 2]

1849 1850 1851
        array = np.arange(0, numel(input_shape), dtype="float32").reshape(
            input_shape
        )
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

        for i in range(len(input_shape)):
            program = paddle.static.Program()
            with paddle.static.program_guard(program):
                out1 = set_value(array, i, op1)
                self.assertTrue((out1[0][5:0:-2] == 0).all())

            if len(array.shape) > 2:
                program2 = paddle.static.Program()
                with paddle.static.program_guard(program2):
                    out2 = set_value(array, i, op2)
                    self.assertTrue((out2[0][6:0:-4] == 0).all())

            program3 = paddle.static.Program()
            with paddle.static.program_guard(program3):
                out3 = set_value(array, i, op3)
                self.assertTrue((numel(out1[0][0:5:3].shape) == out3[0]).all())

            array = array[0]
W
wanghuancoder 已提交
1871
        paddle.disable_static()
1872 1873


Z
zyfncg 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882
class TestSetValueInplace(unittest.TestCase):
    def test_inplace(self):
        paddle.disable_static()
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b = a[:]
            c = b
1883
            b[paddle.zeros([], dtype='int32')] = 1.0
Z
zyfncg 已提交
1884 1885

            self.assertTrue(id(b) == id(c))
1886
            np.testing.assert_array_equal(b.numpy(), c.numpy())
1887
            self.assertEqual(b.inplace_version, 0)
Z
zyfncg 已提交
1888 1889 1890 1891

        paddle.enable_static()


1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
class TestSetValueInplaceLeafVar(unittest.TestCase):
    def test_inplace_var_become_leaf_var(self):
        paddle.disable_static()

        a_grad_1, b_grad_1, a_grad_2, b_grad_2 = 0, 1, 2, 3
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            c.sum().backward()
            a_grad_1 = a.grad.numpy()
            b_grad_1 = b.grad.numpy()

        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            d = paddle.zeros((4, 4))
            self.assertTrue(d.stop_gradient)
            d[0, :] = c
            self.assertFalse(d.stop_gradient)
            d[0, :].sum().backward()
            a_grad_2 = a.grad.numpy()
            b_grad_2 = b.grad.numpy()

1923 1924
        np.testing.assert_array_equal(a_grad_1, a_grad_2)
        np.testing.assert_array_equal(b_grad_1, b_grad_2)
1925 1926 1927
        paddle.enable_static()


1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
class TestSetValueIsSamePlace(unittest.TestCase):
    def test_is_same_place(self):
        paddle.disable_static()
        paddle.seed(100)
        paddle.set_device('cpu')
        a = paddle.rand(shape=[2, 3, 4])
        origin_place = a.place
        a[[0, 1], 1] = 10
        self.assertEqual(origin_place._type(), a.place._type())
        if paddle.is_compiled_with_cuda():
            paddle.set_device('gpu')
        paddle.enable_static()


1942 1943 1944 1945 1946 1947 1948 1949
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not complied with CUDA and not support the bfloat16",
)
class TestSetValueBFloat16(OpTest):
    def setUp(self):
        self.dtype = np.uint16
J
JYChen 已提交
1950 1951
        self.shape = [22, 3, 4]
        self.op_type = 'set_value'
1952
        self.data = np.ones(self.shape).astype(self.dtype)
J
JYChen 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
        value = np.random.rand(4).astype('float32')

        expected_out = np.ones(self.shape).astype('float32')
        expected_out[0, 0] = value

        self.attrs = {
            'axes': [0, 1],
            'starts': [0, 0],
            'ends': [1, 1],
            'steps': [1, 1],
        }
        self.inputs = {
            'Input': convert_float_to_uint16(self.data),
            'ValueTensor': convert_float_to_uint16(value),
        }
        self.outputs = {'Out': convert_float_to_uint16(expected_out)}
1969 1970 1971

    def test_check_output(self):
        place = core.CUDAPlace(0)
J
JYChen 已提交
1972 1973 1974
        # NOTE(zoooo0820) Here we set check_dygraph=False since set_value OP has no corresponding python api
        # to set self.python_api
        self.check_output_with_place(place, check_dygraph=False)
1975 1976 1977

    def test_check_grad(self):
        place = core.CUDAPlace(0)
J
JYChen 已提交
1978
        self.check_grad_with_place(place, ['Input'], 'Out', check_dygraph=False)
1979 1980


1981 1982
if __name__ == '__main__':
    unittest.main()